期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
1
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 yolov8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
一种基于改进YOLOv8n-seg的轻量化茶树嫩芽的茶梗识别模型
2
作者 施武 袁伟皓 +1 位作者 杨梦道 许高建 《江苏农业学报》 北大核心 2025年第1期75-86,共12页
茶树嫩芽茶梗识别对实现茶叶采摘的自动化和智能化具有重要意义。然而,现有的目标检测算法检测茶树嫩芽茶梗存在精度较低、计算量大、模型体积庞大等问题,限制了其在终端设备上的部署。因此,本研究基于YOLOv8n-seg模型,提出一种轻量化... 茶树嫩芽茶梗识别对实现茶叶采摘的自动化和智能化具有重要意义。然而,现有的目标检测算法检测茶树嫩芽茶梗存在精度较低、计算量大、模型体积庞大等问题,限制了其在终端设备上的部署。因此,本研究基于YOLOv8n-seg模型,提出一种轻量化的茶树嫩芽茶梗识别模型YOLOv8n-seg-VLS,并在以下3个方面进行了改进:引入VanillaNet轻量化模块替代原有卷积层,以降低模型的复杂程度;在颈部引入大型可分离核注意力模块(LSKA),以降低存储量和计算资源消耗;将YOLOv8的损失函数从中心点与边界框的重叠联合(CIoU)替换为边界框自身形状与自身尺度之间的损失(Shape-IoU),从而提高边界框的定位精度。在采集的茶叶数据集上进行测试,结果表明,改进后获得的YOLOv8n-seg-VLS模型的平均精度值(mAP)方面表现较好,交并比阈值为0.50的平均精度值(mAP_(0.50))为94.02%,交并比阈值为0.50至0.95的平均精度值(mAP_(0.50∶0.95))为62.34%;模型的准确度(P)为90.08%,召回率(R)为89.96%;改进模型的每秒传输帧数(FPS)为245.20帧,模型的大小为3.92 MB,仅为YOLOv8n-seg大小的57.39%。研究结果为后续茶叶智能化采摘装备的研发提供了技术支持。 展开更多
关键词 图像识别 茶叶采摘 轻量化模型 yolov8n-seg VanillaNet
在线阅读 下载PDF
YOLOv8-DG:基于YOLOv8s改进的草莓成熟度检测模型
3
作者 杨滨硕 狄巨星 杨阳 《长江信息通信》 2025年第1期82-86,共5页
针对自然环境下的红熟期草莓,为实现其成熟度的高效检测,提出一种基于YOLOv8s改进的草莓成熟度检测模型:YOLOv8-DG。以YOLOv8s模型为基础,在C2f模块中引入DCNv2(Deformable Convolution v2)结构,提高了模型的鲁棒性和对特征的辨别性,并... 针对自然环境下的红熟期草莓,为实现其成熟度的高效检测,提出一种基于YOLOv8s改进的草莓成熟度检测模型:YOLOv8-DG。以YOLOv8s模型为基础,在C2f模块中引入DCNv2(Deformable Convolution v2)结构,提高了模型的鲁棒性和对特征的辨别性,并将损失函数替换为GIoU,提高模型收敛速度,从而提高模型的性能。实验结果表明,YOLOv8-DG模型GFLOPS仅有27.6,相比原YOLOv8s模型减少3%;且平均精确度较原YOLOv8s模型提高2.1个百分点。改进后模型相较当前主流YOLO系列模型,平均精度等指标均有所提升,基本可以满足自然环境下的草莓成熟度检测。 展开更多
关键词 yolov8s yolov8-DG DCNv2 模型收敛速度
在线阅读 下载PDF
基于改进YOLOv8n模型的辣椒病害检测方法
4
作者 李芳 危疆树 +2 位作者 王玉超 张尧 谢宇鑫 《江苏农业学报》 北大核心 2025年第2期323-334,共12页
为了解决辣椒病害检测速度慢,漏检率和误检率高的问题,本研究以YOLOv8n为基线模型,引入Adown下采样模块替代原模型骨干网络(Backbone)的卷积下采样层,引入SlimNeck模块将原模型颈部网络中的卷积层和特征聚合模块(C2f)替换为混合卷积模块... 为了解决辣椒病害检测速度慢,漏检率和误检率高的问题,本研究以YOLOv8n为基线模型,引入Adown下采样模块替代原模型骨干网络(Backbone)的卷积下采样层,引入SlimNeck模块将原模型颈部网络中的卷积层和特征聚合模块(C2f)替换为混合卷积模块(GSConv)和跨阶段部分网络(VoVGSCSP)模块,并利用辅助训练头Aux Head(Auxiliary head)融合原有的检测头,构建改进的YOLOv8n模型(YOLOv8n-ATA模型)。最后利用辣椒炭疽病、褐斑病、脐腐病和细菌性叶斑病等4种病害影像数据集对改进后的模型性能进行分析。结果表明,改进后模型的浮点计算量和模型大小比原YOLOv8n模型增加19.5%和10.2%,但模型对辣椒病害的识别精确率、平均精度均值mAP_(50)和mAP_(50∶95)分别提升2.6个百分点、2.9个百分点和2.9个百分点,同时每1 s传输帧数增加15.1%。因此,改进后的模型能够对辣椒病害进行有效识别,较好实现模型识别准确度与效率的平衡。 展开更多
关键词 辣椒病害 yolov8n模型 目标检测 Adown下采样模块 SlimNeck模块 Aux Head检测头
在线阅读 下载PDF
基于改进YOLOv8模型的百合地杂草检测方法
5
作者 王尧 赵霞 程鸿 《软件工程》 2025年第3期24-28,共5页
杂草是百合生长过程中的一大危害,会干扰百合生长并吸收其营养,导致产量下降。文章以百合及其伴生杂草为主要研究对象,将YOLOv8模型引入百合与杂草的检测中,并进行了针对性的改进。首先,构建基于BiFormer双层路由注意力机制的C2f_BF模块... 杂草是百合生长过程中的一大危害,会干扰百合生长并吸收其营养,导致产量下降。文章以百合及其伴生杂草为主要研究对象,将YOLOv8模型引入百合与杂草的检测中,并进行了针对性的改进。首先,构建基于BiFormer双层路由注意力机制的C2f_BF模块;其次,在头部网络Neck端引入GSConv(Grouped Shuffle Convolution)和Slim-neck(轻量化特征融合网络)技术;最后,使用MPDIoU(Multi-Perspective Distance)损失函数克服CIoU(Complete Intersection over Union)损失函数的局限性。实验结果表明,改进后的YOLOv8-LWD(Lily Weed Detection)模型的平均精确率为90.3%,相比于原始YOLOv8n检测模型的平均精确率提升了2.9百分点。该方法可以为百合草害防治提供重要的技术支持,具有实际的应用价值。 展开更多
关键词 百合 杂草检测 yolov8模型 卷积神经网络
在线阅读 下载PDF
基于改进YOLOv8模型的树线接地故障识别
6
作者 王洪江 刘金圣 +3 位作者 赵宏 赵婷婷 代钦 高英才 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第1期113-119,共7页
为提升电力系统中树线接地故障检测的识别效果,提出一种改进YOLOv8模型。该模型通过插入SimAM注意力机制增强特征表示能力,采用GIoU损失函数提升边界框预测的准确性,提高模型在复杂环境下的故障识别性能。为验证改进YOLOv8模型的性能进... 为提升电力系统中树线接地故障检测的识别效果,提出一种改进YOLOv8模型。该模型通过插入SimAM注意力机制增强特征表示能力,采用GIoU损失函数提升边界框预测的准确性,提高模型在复杂环境下的故障识别性能。为验证改进YOLOv8模型的性能进行消融实验、SimAM注意力机制模块的插入位置变化实验、损失函数选择实验,以及与其他识别模型的对比实验。实验结果表明:改进YOLOv8模型的识别精确度、召回率、平均精度均最高。该模型有效提高了树线接地故障检测图像的识别精度,为输电线路的智能化运维提供技术支持。 展开更多
关键词 电力系统 树线接地故障 yolov8模型 SimAM注意力机制 GIoU损失函数
在线阅读 下载PDF
基于改进YOLOv8n的飞机铆钉及脱落异常检测算法
7
作者 夏正洪 何琥 +2 位作者 杨磊 吴建军 刘璐 《中国安全科学学报》 北大核心 2025年第2期66-72,共7页
为解决飞机铆钉小目标检测时易出现漏检的问题,提出一种基于改进YOLOv8n的飞机铆钉及脱落异常检测算法。首先,通过添加小目标检测层,更好地融合骨干网络中的浅层细节信息,提高算法的特征融合能力以及对铆钉小目标的识别与定位性能;其次... 为解决飞机铆钉小目标检测时易出现漏检的问题,提出一种基于改进YOLOv8n的飞机铆钉及脱落异常检测算法。首先,通过添加小目标检测层,更好地融合骨干网络中的浅层细节信息,提高算法的特征融合能力以及对铆钉小目标的识别与定位性能;其次,将骨干网络中的前2次卷积替换为空间深度转换卷积(SPD-Conv),通过特征图的重组与非跨步卷积的组合,减少算法在下采样过程中的信息丢失;然后,将大型可分离核注意力(LSKA)融入快速空间金字塔池化(SPPF)模块中,通过计算每个特征图上的空间权重和通道权重,捕捉空间与通道之间的依赖关系,并调整特征图,增强算法对铆钉特征信息的提取和识别能力;最后,基于自建的飞机铆钉数据集进行消融试验和对比试验。结果表明:所提算法能实时检测飞机铆钉及脱落异常,较YOLOv8n算法检测结果在精确率、召回率、平均精度均值(mAP)分别提升6.5%、16%、15%,较其他主流算法的检测性能均有较大提升。 展开更多
关键词 改进yolov8n 飞机铆钉 脱落 异常检测 空间深度转换卷积(SPD-Conv) 消融试验
在线阅读 下载PDF
基于改进YOLOv8的苹果采摘机器人视觉算法
8
作者 张静 张昊 +1 位作者 聂尚卿 赵青伟 《液压气动与密封》 2025年第3期36-43,共8页
针对苹果采摘机器人的视觉识别算法进行优化,以YOLOv8检测算法为基础进行改进。针对YOLOv8识别算法容易存在漏检错检,同时模型较为复杂,计算参数量较高等问题,设计出一种名为YOLOv8-SNC的目标检测算法。算法引入GSConv替换算法中Neck部... 针对苹果采摘机器人的视觉识别算法进行优化,以YOLOv8检测算法为基础进行改进。针对YOLOv8识别算法容易存在漏检错检,同时模型较为复杂,计算参数量较高等问题,设计出一种名为YOLOv8-SNC的目标检测算法。算法引入GSConv替换算法中Neck部分的传统卷积来提升算法整体的轻量化程度,同时在每个检测头前加入CBAM注意力机制提升网络的特征提取能力,使网络更符合苹果采摘机器人的实际需求。实验结果表明,YOLOv8-SNC目标检测算法与YOLOv8相比,精度P提升2.3%,平均精度均值mAP提升1%,浮点运算次数FLOPs减小了9.88%。在面对重果、枝叶遮挡、多目标等复杂环境时,YOLOv8-SNC拥有更好的鲁棒性。YOLOv8-SNC在提升模型检测精度的同时完成模型轻量化,为苹果采摘机器人提供一种高效可行的识别算法。 展开更多
关键词 yolov8 轻量化改进 注意力机制 多目标检测 采摘机器人
在线阅读 下载PDF
改进YOLOv8算法的机场外来物检测研究
9
作者 郭九霞 李金润 +2 位作者 王义龙 李静远 唐锐 《舰船电子工程》 2025年第3期119-125,共7页
为解决机场外来物检测方法存在检测稳定性差、漏检的问题,论文使用YOLOv8算法进行改进。首先,使用动态卷积ODConv,通过引入可学习的形变模块,动态调整卷积核的形状、大小及通道维度,优化卷积过程并专注于机场外来物的形状大小和尺度变化... 为解决机场外来物检测方法存在检测稳定性差、漏检的问题,论文使用YOLOv8算法进行改进。首先,使用动态卷积ODConv,通过引入可学习的形变模块,动态调整卷积核的形状、大小及通道维度,优化卷积过程并专注于机场外来物的形状大小和尺度变化,实现对图像特征信息的高效提取;其次,设计了C2f_DAConv模块,降低了算法的参数量;然后,在PANet网络架构的基础上,融合主干网络的P2特征层,并将PANet网络架构更改为BiFPN,该网络实现了底层细节特征信息和高层语义特征信息的高效融合,减少了外来物目标特征的信息丢失;最后,为解决预测框与目标框之间的定位误差问题,更改损失函数为Inner SIoU,优化了算法的计算过程,加快了算法训练的收敛速度,同时提升了算法的检测精度。实验结果表明,改进的算法相比原YOLOv8算法,其参数量降低了35.5%,平均精度均值(mAP)达到97.3%,提升了2.0%,召回率(Re-call)为95.5%,提升了5.2%;对比分析F1曲线、P-R曲线和Recall曲线,表明改进的算法在检测稳定性方面有显著提升,能有效解决机场外来物的漏检问题。 展开更多
关键词 改进yolov8算法 FOD检测 动态卷积 机场安全
在线阅读 下载PDF
基于改进YOLOv8的梳棉机棉网上棉结检测方法
10
作者 白雨薇 徐健 +2 位作者 朱耀麟 丁展博 刘晨雨 《纺织学报》 北大核心 2025年第3期56-63,共8页
针对基于深度学习的棉结目标检测模型占用过多计算资源、难以满足嵌入式设备及移动端的实时在线检测的问题,提出基于改进型YOLOv8的梳棉机棉网上棉结检测方法。首先,将轻量型网络MobileNetv3_Small用作YOLOv8n骨干网络,降低计算参数量;... 针对基于深度学习的棉结目标检测模型占用过多计算资源、难以满足嵌入式设备及移动端的实时在线检测的问题,提出基于改进型YOLOv8的梳棉机棉网上棉结检测方法。首先,将轻量型网络MobileNetv3_Small用作YOLOv8n骨干网络,降低计算参数量;其次,在MobileNetv3网络中使用自改进协调注意力机制(coordinate attention)模块替换原有的压缩和激励(squeeze-and-excitation)注意力机制模块,提升对棉结的检测精度;最后,使用EIoU损失函数取代原YOLOv8n中的CIoU损失函数,在处理数据时保留更多有效信息。在自制棉结图像数据集上验证改进型YOLOv8算法的检测效果,结果表明:基于改进型YOLOv8的检测方法平均准确率均值达到95.8%,相较于改进前提升了2.6%;参数量减少了34.2%。改进后算法的检测效果更好,且模型更加轻量,可满足嵌入式设备的使用。 展开更多
关键词 梳棉机棉网 深度学习 目标检测 棉结 轻量化模型 yolov8 图像检测
在线阅读 下载PDF
改进YOLOv8的城市行车道路障碍物检测算法研究
11
作者 向雷 蒋文波 《电子测量技术》 北大核心 2025年第1期29-38,共10页
针对目前城市道路复杂环境下障碍物检测精度不足、检测速度慢、模型参数量大和小目标障碍物检测效果不佳的问题,提出一种改进的YOLOv8n轻量级城市行车道路障碍物检测算法。首先,制作MRObstacle城市道路障碍物目标检测数据集,扩展了障碍... 针对目前城市道路复杂环境下障碍物检测精度不足、检测速度慢、模型参数量大和小目标障碍物检测效果不佳的问题,提出一种改进的YOLOv8n轻量级城市行车道路障碍物检测算法。首先,制作MRObstacle城市道路障碍物目标检测数据集,扩展了障碍物检测种类与数量;其次,设计全新的SPS_C2f改进主干网络,降低网络参数量与提升检测速度,添加M_ECA注意力模块至网络的Neck部分,提升网络检测速度与特征表达能力;再次,融合BiFPN特征金字塔和添加小目标检测头,更好地捕捉小尺寸障碍物的特征;最后,使用可优化边界框宽度与高度值的损失函数MPDIoU,提升网络边界框回归性能。相比于原YOLOv8n算法,该算法的mAP0.5指标提升2.04%,达到97.12%;FPS值提升12.08 fps,达到107.45 fps;网络参数量减少10%,降低至2.73 MB。该算法在减少参数量的同时提高了检测精度和速度,可更好应用于城市行车道路障碍物检测任务。 展开更多
关键词 障碍物检测 yolov8 改进C2f模块 改进注意力机制 损失函数
在线阅读 下载PDF
基于轻量化YOLOv8-FasterBlock模型的云南小粒咖啡生豆分级方法
12
作者 杨红欣 陈越 +6 位作者 裴国权 钱雪英 李沛瑶 朱才英 夏迁 刘自高 吴文斗 《食品科学》 北大核心 2025年第4期268-277,共10页
建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将... 建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将YOLOv8n模型中C2f模块的BottleneckBlock替换为FasterNet中的FasterBlock模块,改进后形成新的轻量化YOLOv8-FasterBlock模型。将该模型应用于实验中不同等级咖啡豆分级检测,结果显示,提出的YOLOv8-FasterBlock模型精确率、召回率和平均精度均值分别达到了98.4%、94.3%、97.4%,其检测平均时间为2.4 ms。在后续进行的一系列对比实验、消融实验、轻量化实验以及粘连豆实验,证明了YOLOv8-FasterBlock模型的优越性和结构有效性。YOLOv8-FasterBlock模型在降低模型复杂度的同时,提升了对小粒咖啡生豆的特征提取能力和推理速度,可实现咖啡豆分级快速检测。研究结果可为后续小粒咖啡生豆分级设备的视觉模块部署提供参考,也可以为其他农产品的分级提供理论支持。 展开更多
关键词 小粒咖啡 生豆 yolov8-FasterBlock模型 目标检测 分级
在线阅读 下载PDF
基于改进YOLOv8算法的谷子田杂草检测
13
作者 王鑫淼 张正 +2 位作者 董晓威 王林烽 李瑞祥 《中国农机化学报》 北大核心 2025年第1期185-189,226,共6页
针对谷子田环境复杂、杂草种类众多、杂草分布密集的特点导致识别精度低的问题,提出一种基于YOLOv8的改进模型。通过加入CloFormer结构来减少YOLOv8算法计算量并提高识别精度,使用Global和Local的注意力与c2f模块进行融合,使用AttnConv... 针对谷子田环境复杂、杂草种类众多、杂草分布密集的特点导致识别精度低的问题,提出一种基于YOLOv8的改进模型。通过加入CloFormer结构来减少YOLOv8算法计算量并提高识别精度,使用Global和Local的注意力与c2f模块进行融合,使用AttnConv共享权重来整合局部信息,部署上下文感知权重来增强局部特征;为进一步提高识别精度,另外添加Gam注意力机制,与当前较先进的注意力机制进行对比试验,并与YOLO各系列模型进行对比试验。结果表明,YOLOv8-CG模型检测的平均精度均值为92.6%,比YOLOv5模型高4%。同时分析垄的种植密度不同对模型识别产生的影响,种植较为稀疏的10号垄比种植密集的2号垄精度高6.6%。 展开更多
关键词 杂草检测 谷子 yolov8 注意力机制 轻量级模型
在线阅读 下载PDF
基于YOLOv5改进模型的金属表面缺陷检测实验研究
14
作者 赵辉 陈志峰 +2 位作者 章佳伟 李骁凡 魏震杨 《实验技术与管理》 北大核心 2025年第1期66-74,共9页
金属零部件的表面缺陷检测是汽车等产品生产过程中的重要环节,以往采用人工检视或传统光学筛选方法,该方法难以满足现代工业生产的高效性和准确性要求。该研究源于校企协同育人的创新课题,从企业提出的实际问题出发,选取汽车喷油管表面... 金属零部件的表面缺陷检测是汽车等产品生产过程中的重要环节,以往采用人工检视或传统光学筛选方法,该方法难以满足现代工业生产的高效性和准确性要求。该研究源于校企协同育人的创新课题,从企业提出的实际问题出发,选取汽车喷油管表面缺陷作为研究案例。为了提高对弱小缺陷的检测准确率和速度,提出了一种基于YOLOv5轻量化模型的改进结构:YOLOv5n-STSL。该模型通过改进原模型中的卷积模块C3为C2f模块,在保证轻量化的同时获取了更丰富的梯度信息流;通过往浅层特征图移动检测分支,增加不同层次的特征融合,提高了弱小目标的特征提取和检测能力;同时改进锚框anchors的计算评估策略,确保锚框与真实缺陷的边界框有更高的匹配精度,从而提高定位和分类的准确性。实验表明,缺陷检测精度达到97.8%,相对于原基础模型YOLOv5n,检测精度提高了5%,最后将模型部署到嵌入式设备JestonNano,采用TensorRT推理引擎加速推理实验,帧速可达21帧/s,更好地满足了金属表面缺陷自动检测实时性的应用需求。 展开更多
关键词 缺陷检测 模型改进 yolov5n-STSL ANCHORS 设备部署
在线阅读 下载PDF
基于改进YOLOv8n的安格斯牛面部识别
15
作者 胡立俊 李旭 李国亮 《华中农业大学学报》 北大核心 2025年第2期39-48,共10页
为解决安格斯牛独特的黑色毛发导致其面部特征区分困难的问题,采用基于YOLOv8n的改进方法,实现圈养环境中的安格斯牛准确、非接触式的面部识别。首先构建了一个包含200头安格斯牛在不同生长阶段的11 000张面部图像的数据集;其次,引入创... 为解决安格斯牛独特的黑色毛发导致其面部特征区分困难的问题,采用基于YOLOv8n的改进方法,实现圈养环境中的安格斯牛准确、非接触式的面部识别。首先构建了一个包含200头安格斯牛在不同生长阶段的11 000张面部图像的数据集;其次,引入创新的增强感受野特征融合模块,该模块增强了模型对关键特征的关注;再次,设计了新型轻量化检测头LPCDH,用于安格斯牛的面部特征识别;最后,采用组泰勒剪枝方法,通过估计神经元的重要性剪除不重要的神经元,从而减少计算成本和内存占用,提升模型的部署效率。试验结果显示,改进后的模型平均识别准确率达到92.6%。与常用的SSD、YOLOv5n、YOLOv8s、YOLOv8m、YOLOv9t、YOLOv10n、RT-Detr和Mamba-YOLO模型相比,准确率分别提高了11.5、3.8、1.8、1.9、5.1、3.9、3.7和2.4百分点。与原始YOLOv8n模型相比,所设计模型在4折交叉验证中的准确率平均提高了3.1百分点。结果表明,该模型在内存消耗和计算需求方面实现了轻量化,特别适合在移动端和实际应用中的实时识别,可显著提高安格斯牛面部识别的准确率和效率。 展开更多
关键词 安格斯牛 yolov8n 剪枝 牛只识别 面部检测模型
在线阅读 下载PDF
基于改进YOLOv8n的水面残留饲料检测算法
16
作者 郑海锋 江林源 +3 位作者 文露婷 周秀珊 介百飞 文家燕 《渔业现代化》 北大核心 2025年第1期80-88,共9页
在水产养殖中,水面残留饲料的实时检测可以有效减少饲料浪费和水污染,在经济效益和生态效益方面是双赢的局面。由于水面残留饲料的特殊性,如尺寸小、密集程度高等,使得水面残留饲料检测表现不佳。该研究提出了一种基于改进YOLOv8n的水... 在水产养殖中,水面残留饲料的实时检测可以有效减少饲料浪费和水污染,在经济效益和生态效益方面是双赢的局面。由于水面残留饲料的特殊性,如尺寸小、密集程度高等,使得水面残留饲料检测表现不佳。该研究提出了一种基于改进YOLOv8n的水面残留饲料检测算法,通过增添小目标检测层,融合多尺度特征以增强对小目标检测的精度;引入C2f_Faster_EMA模块,以降低模型的参数量,提高模型检测速度;构建ICBAM模块融入颈部网络,加强网络对小目标的特征信息融合,提升检测精度。结果显示:该算法相较于YOLOv8n的mAP@0.5提升10.3%;精确率P提升7.6%;召回率R提升10.2%;检测速度达到了125FPS。研究表明,该算法能有效实现对水面残留饲料快速、准确地检测。为实现水产养殖的智能化管理提供了技术支持,有望降低饲料浪费,改善水环境质量,提高养殖效益。 展开更多
关键词 水面残留饲料 改进yolov8n 小目标检测层 C2f_Faster_EMA ICBAM
在线阅读 下载PDF
改进YOLOv8的道路损伤检测
17
作者 王瀚毅 李春彪 宋衡 《计算机系统应用》 2025年第1期179-189,共11页
针对道路损伤检测面临的多尺度目标、复杂的目标结构、样本分布不均及难易样本对边界框回归的影响等问题,本研究提出了一种基于改进YOLOv8的道路损伤检测算法.该方法通过引入动态蛇形卷积(dynamic snake convolution,DSConv)替代原有C2f... 针对道路损伤检测面临的多尺度目标、复杂的目标结构、样本分布不均及难易样本对边界框回归的影响等问题,本研究提出了一种基于改进YOLOv8的道路损伤检测算法.该方法通过引入动态蛇形卷积(dynamic snake convolution,DSConv)替代原有C2f(faster implementation of CSP bottleneck with 2 convolutions)模块中的部分Conv,以自适应聚焦于细小而曲折的局部特征,增强对几何结构的感知.在每个检测头前引入高效多尺度注意力(efficient multi-scale attention,EMA)模块,实现跨维度交互,捕获像素级别关系,提升对复杂全局特征的泛化能力.同时,增设小目标检测层以提高小目标检测精度.最后,提出Flex-PIoUv2策略,通过线性区间映射和尺寸适应性惩罚因子,有效缓解样本分布不均和锚框膨胀问题.实验结果表明,该改进模型在RDD2022数据集上的F1分数、平均精度均值(mAP50、mAP50-95)分别提高了1.5百分点、2.1百分点和1.2百分点.此外,在GRDDC2020和China road damage数据集上的验证结果显示,该算法具有良好的泛化性. 展开更多
关键词 目标检测 yolov8 道路损失检测 改进损失函数 边界框回归
在线阅读 下载PDF
基于改进YOLOv8的PCB缺陷检测算法
18
作者 王悍悍 沈珊瑚 李明泽 《杭州师范大学学报(自然科学版)》 2025年第1期19-26,共8页
针对目前大多数印刷电路板(printed circuit board,PCB)缺陷检测算法中准确度较低、模型较大及移动部署不便的问题,提出了一种改进的YOLOv8算法.该算法使用GhostNet和HGNetV2的结合作为网络主干,增加小目标检测层和坐标注意力机制,采用... 针对目前大多数印刷电路板(printed circuit board,PCB)缺陷检测算法中准确度较低、模型较大及移动部署不便的问题,提出了一种改进的YOLOv8算法.该算法使用GhostNet和HGNetV2的结合作为网络主干,增加小目标检测层和坐标注意力机制,采用动态上采样器(DySample)替换最邻近上采样算子以提升检测精度,将选定锚框的交并比(intersection over union,IoU)改为Inner-CIoU.结果显示,相较于原始YOLOv8算法,改进后算法的检测精度提升了2.0百分点,达到97.6%,召回率提升了2.8百分点,达到94.5%,参数量减少了24.58%,模型大小仅为4.84 MB,检测速度达到216.6帧/s.检测精度的提升和模型体积的显著减小,使得改进算法能更好地满足工业场景对PCB缺陷检测的要求. 展开更多
关键词 PCB缺陷检测 改进yolov8 坐标注意力机制 动态上采样 Inner-CIoU
在线阅读 下载PDF
改进型YOLOv8算法在火灾探测中的应用
19
作者 邓力 周进 刘全义 《安全与环境学报》 北大核心 2025年第3期888-897,共10页
为了提高YOLOv8n算法在火灾探测方面的性能,给出了一种改进方法,通过集成上下文聚合架构Container和轻量级网络GhostNet来优化YOLOv8n网络结构。消融试验和对比试验的结果表明,所提方法能够有效改善YOLOv8n算法检测火灾的效果。该算法... 为了提高YOLOv8n算法在火灾探测方面的性能,给出了一种改进方法,通过集成上下文聚合架构Container和轻量级网络GhostNet来优化YOLOv8n网络结构。消融试验和对比试验的结果表明,所提方法能够有效改善YOLOv8n算法检测火灾的效果。该算法的平均精度达92.8%,探测速度达95.24帧/s,查准率达95%,具备更高的探测性能,可以为火灾探测器的研发提供参考。 展开更多
关键词 安全工程 改进yolov8算法 深度学习 火灾探测
在线阅读 下载PDF
面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究
20
作者 张立立 杨康 +4 位作者 张珂 魏薇 李晶 谭洪鑫 张翔宇 《图学学报》 北大核心 2025年第2期249-258,共10页
柴油车辆排放黑烟是道路交通环保执法的重点和难点。由于受复杂环境条件的影响,针对目前黑烟检测存在精度和速度方面的不足,提出一种基于改进YOLOv8的轻量级柴油车辆排放黑烟的检测模型。首先,在YOLOv8主干网络的基础上,设计一种轻量化... 柴油车辆排放黑烟是道路交通环保执法的重点和难点。由于受复杂环境条件的影响,针对目前黑烟检测存在精度和速度方面的不足,提出一种基于改进YOLOv8的轻量级柴油车辆排放黑烟的检测模型。首先,在YOLOv8主干网络的基础上,设计一种轻量化特征提取模块C2f-FasterRep提高模型的特征提取能力,同时C2f-FasterRep模块引入上下文锚框注意力机制模块来捕捉长距离的上下文信息,利用全局平均池化和条形卷积增强特征图中心区域的特征,从而提高检测精度;其次,在颈部部分提出一个新的网络结构用于融合主干网络提取的特征,并使用通道注意力模块和维度匹配机制对不同尺度的特征进行融合,增强了模型的多尺度特征融合能力;最后,使用Transformer解码器结构优化YOLOv8模型的检测头,同时,采用交并比感知的查询机制,有助于解码器查询的优化,提高了模型的分类和定位的性能。为保证实验的真实性和有效性,利用部署在河南许昌某道路断面的检测设备采集数据并进行测试验证。实验结果表明,该方法的mAp为95.4%,精确率为94.5%,召回率为97.5%,与现有的黑烟检测方法相比,具有更高的检测精度和更快的检测速度。消融实验结果表明该轻量化特征提取模块、特征融合模块和检测头有利于提高模型检测精度。 展开更多
关键词 目标检测 黑烟检测 yolov8 轻量级模型 注意力机制
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部