期刊文献+
共找到370,104篇文章
< 1 2 250 >
每页显示 20 50 100
An Adaptive Cooperated Shuffled Frog-Leaping Algorithm for Parallel Batch Processing Machines Scheduling in Fabric Dyeing Processes
1
作者 Lianqiang Wu Deming Lei Yutong Cai 《Computers, Materials & Continua》 2025年第5期1771-1789,共19页
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ... Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility. 展开更多
关键词 Batch processing machine parallel machine scheduling shuffled frog-leaping algorithm fabric dyeing process machine eligibility
在线阅读 下载PDF
A Tolerant and Energy Optimization Approach for Internet of Things to Enhance the QoS Using Adaptive Blended Marine Predators Algorithm
2
作者 Vijaya Krishna Akula Tan Kuan Tak +2 位作者 Pravin Ramdas Kshirsagar Shrikant Vijayrao Sonekar Gopichand Ginnela 《Computers, Materials & Continua》 2025年第5期2449-2479,共31页
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape... The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications. 展开更多
关键词 Internet of things trust energy marine predators algorithm(MPA) differential evolution(DE) NODES throughput lifetime
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
3
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
Adaptive optoelectronic transistor for intelligent vision system 被引量:1
4
作者 Yiru Wang Shanshuo Liu +5 位作者 Hongxin Zhang Yuchen Cao Zitong Mu Mingdong Yi Linghai Xie Haifeng Ling 《Journal of Semiconductors》 2025年第2期53-70,共18页
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a... Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems. 展开更多
关键词 adaptive optoelectronic transistor neuromorphic computing artificial vision
在线阅读 下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
5
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
在线阅读 下载PDF
A Novel Clutter Suppression Algorithm for Low-Slow-Small Targets Detecting Based on Sparse Adaptive Filtering 被引量:1
6
作者 Zeqi Yang Shuai Ma +2 位作者 Ning Liu Kai Chang Xiaode Lyu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期54-64,共11页
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I... Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance. 展开更多
关键词 passive radar interference suppression sparse representation adaptive filtering
在线阅读 下载PDF
Optimizing Stand-Alone PV Systems:A Metaheuristic-Enhanced Fuzzy Approach for Adaptive MPPT
7
作者 Tina Samavat Mostafa Nazari +1 位作者 Lin Fuhong Lei Yang 《China Communications》 2025年第1期61-74,共14页
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe... This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental conditions.We propose a robust FLC with low computational complexity by reducing the number of membership functions and rules.To optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the FLC.We evaluate the proposed FLC in various panel configurations under different environmental conditions.The results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios. 展开更多
关键词 genetic algorithm imperialist competitive algorithm invasive weed algorithm maximum power point tracking
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
8
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 adaptive Grasshopper Optimization algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
9
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
在线阅读 下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
10
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) adaptive filter Iterative search algorithm Least mean square(LMS) Vibration suppression
在线阅读 下载PDF
Application of Adaptive Whale Optimization Algorithm Based BP Neural Network in RSSI Positioning
11
作者 Duo Peng Mingshuo Liu Kun Xie 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期516-529,共14页
The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A a... The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm. 展开更多
关键词 wireless sensor network received signal strength neural network whale optimization algorithm adaptive weight factor extended Kalman filter
在线阅读 下载PDF
BIG-ABAC:Leveraging Big Data for Adaptive,Scalable,and Context-Aware Access Control
12
作者 Sondes Baccouri Takoua Abdellatif 《Computer Modeling in Engineering & Sciences》 2025年第4期1071-1093,共23页
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans... Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT). 展开更多
关键词 ABAC big data CONTEXT-AWARE decision trees adaptive policy SCALABILITY
在线阅读 下载PDF
Physically Constrained Adaptive Deep Learning for Ocean Vertical-Mixing Parameterization
13
作者 Junjie FANG Xiaojie LI +4 位作者 Jin LI Zhanao HUANG Yongqiang YU Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期165-177,共13页
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res... Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results. 展开更多
关键词 deep learning vertical-mixing parameterization ocean sciences adaptive network
在线阅读 下载PDF
Privacy-Preserving Fingerprint Recognition via Federated Adaptive Domain Generalization
14
作者 Yonghang Yan Xin Xie +2 位作者 Hengyi Ren Ying Cao Hongwei Chang 《Computers, Materials & Continua》 2025年第3期5035-5055,共21页
Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose signifi... Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks,potentially leading to user data leakage.Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data,effectively addressing privacy and security concerns.However,variations in fingerprint data due to factors such as region,ethnicity,sensor quality,and environmental conditions result in significant heterogeneity across clients.This heterogeneity adversely impacts the generalization ability of the global model,limiting its performance across diverse distributions.To address these challenges,we propose an Adaptive Federated Fingerprint Recognition algorithm(AFFR)based on Federated Learning.The algorithm incorporates a generalization adjustment mechanism that evaluates the generalization gap between the local models and the global model,adaptively adjusting aggregation weights to mitigate the impact of heterogeneity caused by differences in data quality and feature characteristics.Additionally,a noise mechanism is embedded in client-side training to reduce the risk of fingerprint data leakage arising from weight disclosures during model updates.Experiments conducted on three public datasets demonstrate that AFFR significantly enhances model accuracy while ensuring robust privacy protection,showcasing its strong application potential and competitiveness in heterogeneous data environments. 展开更多
关键词 Fingerprint recognition privacy protection federated learning adaptive weight adjustment
在线阅读 下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
15
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
在线阅读 下载PDF
Single-cell sequencing reveals the features of adaptive immune responses in the liver of a mouse model of dengue fever
16
作者 Yizhen Yuan Qian Chen +3 位作者 Zhe Li Fangzhou Cai Dan Li Wei Wang 《Animal Models and Experimental Medicine》 2025年第1期30-43,共14页
Background:Dengue fever,an acute insect-borne infectious disease caused by the dengue virus(DENV),poses a great challenge to global public health.Hepatic involve-ment is the most common complication of severe dengue a... Background:Dengue fever,an acute insect-borne infectious disease caused by the dengue virus(DENV),poses a great challenge to global public health.Hepatic involve-ment is the most common complication of severe dengue and is closely related to the occurrence and development of disease.However,the features of adaptive immune responses associated with liver injury in severe dengue are not clear.Methods:We used single-cell sequencing to examine the liver tissues of mild or se-vere dengue mice model to analyze the changes in immune response of T cells in the liver after dengue virus infection,and the immune interaction between macrophages and T cells.Flow cytometry was used to detect T cells and macrophages in mouse liver and blood to verify the single-cell sequencing results.Results:Our result showed CTLs were significantly activated in the severe liver injury group but the immune function-related signal pathway was down-regulated.The rea-son may be that the excessive immune response in the severe group at the late stage of DENV infection induces the polarization of macrophages into M2 type,and the macrophages then inhibit T cell immunity through the TGF-βsignaling pathway.In ad-dition,the increased proportion of Treg cells suggested that Th17/Treg homeostasis was disrupted in the livers of severe liver injury mice.Conclusions:In this study,single-cell sequencing and flow cytometry revealed the characteristic changes of T cell immune response and the role of macrophages in the liver of severe dengue fever mice.Our study provides a better understanding of the pathogenesis of liver injury in dengue fever patients. 展开更多
关键词 adaptive immunity dengue fever model liver injury single-cell sequencing
在线阅读 下载PDF
Communication delay-aware cooperative adaptive cruise control with dynamic network topologies——A convergence of communication and control
17
作者 Jihong Liu Yiqing Zhou Ling Liu 《Digital Communications and Networks》 2025年第1期191-199,共9页
Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ... Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency. 展开更多
关键词 Communication delay Cooperative adaptive Cruise control Network topology String stability
在线阅读 下载PDF
Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods
18
作者 Wei Chen Xin Gao +2 位作者 Zhanhong Wei Xusheng Yang Zhao Li 《Energy Engineering》 2025年第2期805-821,共17页
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta... This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance. 展开更多
关键词 DC microgrid BIFURCATION small-world network voltage synchronization improved adaptive control
在线阅读 下载PDF
Adaptive regulation-based Mutual Information Camouflage Poisoning Attack in Graph Neural Networks
19
作者 Jihui Yin Taorui Yang +3 位作者 Yifei Sun Jianzhi Gao Jiangbo Lu Zhi-Hui Zhan 《Journal of Automation and Intelligence》 2025年第1期21-28,共8页
Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks ... Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks to generate a set of fake nodes,injecting them into a clean GNNs to poison the graph structure and evaluate the robustness of GNNs.In the attack process,the computation of new node connections and the attack loss are independent,which affects the attack on the GNN.To improve this,a Fake Node Camouflage Attack based on Mutual Information(FNCAMI)algorithm is proposed.By incorporating Mutual Information(MI)loss,the distribution of nodes injected into the GNNs become more similar to the original nodes,achieving better attack results.Since the loss ratios of GNNs and MI affect performance,we also design an adaptive weighting method.By adjusting the loss weights in real-time through rate changes,larger loss values are obtained,eliminating local optima.The feasibility,effectiveness,and stealthiness of this algorithm are validated on four real datasets.Additionally,we use both global and targeted attacks to test the algorithm’s performance.Comparisons with baseline attack algorithms and ablation experiments demonstrate the efficiency of the FNCAMI algorithm. 展开更多
关键词 Mutual information adaptive weighting Poisoning attack Graph neural networks
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
20
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部