针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对...针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对传统的RRT算法进行改进,同时考虑到实际情况中无人驾驶车辆的动力学约束,该算法加入车辆碰撞约束和路径转角约束,并针对转角约束会导致迭代次数激增的问题提出了一种限制区域内随机转向的策略,最终得到一条安全性较高的路径.采用计算机仿真对所提算法和现有算法的性能进行对比验证.所提算法在狭长空间相较于传统人工势场引导下的RRT算法迭代次数降低了33.09%,规划时间减少了6.44%,路径长度减少了0.06%,并且在简单环境和复杂障碍物环境下规划能力均有提升.所提算法规划效率更高、迭代次数更少.展开更多
非刚性点集配准是计算机视觉和模式识别领域的基础研究问题,现今的非刚性点集配准算法在存在大量离群点、噪声、点集对应关系缺失、旋转和形变情况下,不能非常准确地评估出两个点集间的对应关系.本文通过交替执行点集对应关系评估和空...非刚性点集配准是计算机视觉和模式识别领域的基础研究问题,现今的非刚性点集配准算法在存在大量离群点、噪声、点集对应关系缺失、旋转和形变情况下,不能非常准确地评估出两个点集间的对应关系.本文通过交替执行点集对应关系评估和空间转换更新两个步骤来逐步恢复点集间一一对应关系.在对应关系评估步骤,首先本文基于有限重尾学生t分布隐变量混合模型(student-t distribution Latent Mixture Model,简称TLMM)构造变分贝叶斯层次概率模型(Variational Bayes Hierarchical Probability Model,简称VBHPM)并将其分为对应关系评估组件和离群点聚合组件,分别用来评估点集间对应关系和聚合离群点,同时使用贝叶斯线性回归方法来抵抗噪声的干扰.其次本文加入Dirichlet先验分布来动态调节模型的混合比例,为对应关系缺失的点分配较小的混合比例以保持点集结构的稳定性.在空间转换更新步骤,本文基于变分贝叶斯(Variational Bayes,简称VB)框架来迭代更新模型参数,并提出树状平均场因式分解方法来维持模型参数间的依赖关系,以获得更紧致的变分下界.此外,本文提出自适应全局-局部约束策略来维持点集间结构的稳定性,抵抗形变和旋转影响的同时实现从局部到全局的约束过程.最后,本文采用了双阶段先验退火方案,在退火过程中使用Gamma先验分布来动态调节精度,实现由粗到精的配准过程.在实验部分,本文不仅测试了VBHPM的性能,而且展示了点集和图像配准的结果,并与当前流行的13种算法进行了比较,VBHPM皆能展现较准确的配准结果和较高的精度.展开更多
文摘针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对传统的RRT算法进行改进,同时考虑到实际情况中无人驾驶车辆的动力学约束,该算法加入车辆碰撞约束和路径转角约束,并针对转角约束会导致迭代次数激增的问题提出了一种限制区域内随机转向的策略,最终得到一条安全性较高的路径.采用计算机仿真对所提算法和现有算法的性能进行对比验证.所提算法在狭长空间相较于传统人工势场引导下的RRT算法迭代次数降低了33.09%,规划时间减少了6.44%,路径长度减少了0.06%,并且在简单环境和复杂障碍物环境下规划能力均有提升.所提算法规划效率更高、迭代次数更少.
文摘非刚性点集配准是计算机视觉和模式识别领域的基础研究问题,现今的非刚性点集配准算法在存在大量离群点、噪声、点集对应关系缺失、旋转和形变情况下,不能非常准确地评估出两个点集间的对应关系.本文通过交替执行点集对应关系评估和空间转换更新两个步骤来逐步恢复点集间一一对应关系.在对应关系评估步骤,首先本文基于有限重尾学生t分布隐变量混合模型(student-t distribution Latent Mixture Model,简称TLMM)构造变分贝叶斯层次概率模型(Variational Bayes Hierarchical Probability Model,简称VBHPM)并将其分为对应关系评估组件和离群点聚合组件,分别用来评估点集间对应关系和聚合离群点,同时使用贝叶斯线性回归方法来抵抗噪声的干扰.其次本文加入Dirichlet先验分布来动态调节模型的混合比例,为对应关系缺失的点分配较小的混合比例以保持点集结构的稳定性.在空间转换更新步骤,本文基于变分贝叶斯(Variational Bayes,简称VB)框架来迭代更新模型参数,并提出树状平均场因式分解方法来维持模型参数间的依赖关系,以获得更紧致的变分下界.此外,本文提出自适应全局-局部约束策略来维持点集间结构的稳定性,抵抗形变和旋转影响的同时实现从局部到全局的约束过程.最后,本文采用了双阶段先验退火方案,在退火过程中使用Gamma先验分布来动态调节精度,实现由粗到精的配准过程.在实验部分,本文不仅测试了VBHPM的性能,而且展示了点集和图像配准的结果,并与当前流行的13种算法进行了比较,VBHPM皆能展现较准确的配准结果和较高的精度.