To solve the problem such as too many models, long computing time and so on, a hierarchical multiple models direct adaptive decoupling controller is designed. It consists of multiple levels. In the upper level, the be...To solve the problem such as too many models, long computing time and so on, a hierarchical multiple models direct adaptive decoupling controller is designed. It consists of multiple levels. In the upper level, the best model is chosen according to the switching index. Then multiple fixed models are constructed on line to cover the region which the above chosen fixed model lies in.In the last level, one free-running and one re-initialized adaptive model are added to guarantee the stability and improve the transient response. By selection of the weighting polynomial matrix, it not only eliminates the steady output error and places the poles of the closed loop system arbitrarily, but also decouples the system dynamically. At last, for this multiple models switching system, global convergence is obtained under common assumptions. Compared with the conventional multiple models adaptive controller, it reduces the number of the fixed models greatly. If the same number of the fixed models is used, the system transient response and decoupling result are improved. The simulation example illustrates the power of the derived controller.展开更多
The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized...The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
Landform elements with varying morphologies and spatial arrangements are recognized as feature indicator of landform classification and play a critical role in geomorphological studies.Differential geometry method has...Landform elements with varying morphologies and spatial arrangements are recognized as feature indicator of landform classification and play a critical role in geomorphological studies.Differential geometry method has been extensively applied in prior landform element research,while its efficacy in differentiating similar morphological characteristics remains inadequate to date.To reduce reliance on geomorphometric variables and increase awareness of landform patterns,geomorphons method was generated in previous study corresponding to specific landform reclassification map based on lookup table.Besides,to address the problem of feature similarity,hierarchical classification was proposed and effectively utilized for terrain recognition through the analytical strategy of fuzzy gradient features.Thus,combining the advantages of these two aspects,a hierarchical framework was proposed in this study for landform element pattern recognition considering the morphology and hierarchy factors.First,the local triplet patterns derived from geomorphons were enhanced by setting the flatness threshold,and subsequently adopted for the primary landform element recognition.Then,as geomorphic units with the same morphology possess different spatial analytical scales,the unidentified landform elements under the principle of scale adaptation were determined by calculating the spatial correlation and entropy information.To ensure the effectiveness of this proposed method,the sampling points were randomly selected from NASADEM data and then validated against a real 3D terrain model.Quantitative results of landform element pattern recognition demonstrate that our approach can reach above 77%average accuracy.Additionally,it delineates local details more effectively than geomorphons in visual assessment,resulting in a 7%accuracy improvement in overall scale.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filte...An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filter set up in You, Lin and Deng (1997). The result is shown below in three aspects. (l1 The variation of global temperature in this period is marked by warming on a large scale and can be divided into three stages of being cold (prior to 1919), warm (between 1920 and 1978) and warmer (since 1 979). Well-defined jumps are with the variation in correspondence with the hierarchical evolution on such scale, occurring in 1920 and 1979 when there is the most substantial jump towards warming. For the evolution on smaller scales, however, the variation has shown more of alternations of cold and warm temperatures. The preceding hierarchical structure and warming jump are added with new ones. (2) The trend in which temperature varies is much the same for China and the Yunnan Province, but it is not consistent with that globally, the largest difference being that a weak period of cold temperature in 1955 - 1978 across the globe was suspended in 1979 when it jumped to a significant warming,while a period of very cold temperature in 1955 - 1986 in China and Yunnan was not followed by warming in similar extent until 1987. (3) Though there are consistent hierarchical structure and jumping features throughout the year in Yunnan, significant changes with season are also present and the most striking difference is that temperature tends to vary consistently with China in winter and spring but with the globe in summer and fall.展开更多
Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can dri...Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.展开更多
How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.A...How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.展开更多
This study explores the use of the hierarchical ensemble filter to determine the localized influence of observations in the Weather Research and Forecasting ensemble square root filtering(WRF-EnSRF)assimilation system...This study explores the use of the hierarchical ensemble filter to determine the localized influence of observations in the Weather Research and Forecasting ensemble square root filtering(WRF-EnSRF)assimilation system.With error correlations between observations and background field state variables considered,the adaptive localization approach is applied to conduct a series of ideal storm-scale data assimilation experiments using simulated Doppler radar data.Comparisons between adaptive and empirical localization methods are made,and the feasibility of adaptive localization for storm-scale ensemble Kalman filter assimilation is demonstrated.Unlike empirical localization,which relies on prior knowledge of distance between observations and background field,the hierarchical ensemble filter provides continuously updating localization influence weights adaptively.The adaptive scheme improves assimilation quality during rapid storm development and enhances assimilation of reflectivity observations.The characteristics of both the observation type and the storm development stage should be considered when identifying the most appropriate localization method.Ultimately,combining empirical and adaptive methods can optimize assimilation quality.展开更多
近年来,大模型推动自然语言处理、机器视觉等众多领域取得前所未有的进展.混合专家(mixture of experts,MoE)凭借在模型参数扩展、计算成本控制和复杂任务处理等方面的独特优势成为大模型的主流架构之一.然而,随着参数规模的持续增长,...近年来,大模型推动自然语言处理、机器视觉等众多领域取得前所未有的进展.混合专家(mixture of experts,MoE)凭借在模型参数扩展、计算成本控制和复杂任务处理等方面的独特优势成为大模型的主流架构之一.然而,随着参数规模的持续增长,系统的执行效率和可扩展能力愈发难以满足需求,亟待解决.系统优化方法是解决这一挑战的有效途径,日益成为研究热点.故综述大模型时代MoE系统优化技术的研究现状,首先介绍MoE大模型的发展现状,并分析其在系统端面临的性能瓶颈;然后从内存占用、通信延迟、计算效率和并行扩展4个系统核心维度对最新的研究进展进行全面梳理和深入分析,并对其中涉及的关键技术、适用场景和待优化方向进行详细对比阐述;最后总结MoE系统优化的研究现状,并展望未来研究方向.展开更多
In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfa...In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.展开更多
为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gate...为维护网络运行安全,保证网络信息安全存储,提出基于多源数据挖掘的网络安全态势评估系统。首先建立以应用层、控制层、数据转发层为核心的3层网络安全态势系统架构,为保证应用层与网络设备之间信息有效传输,利用OSGi(Open Service Gateway Initiative)设计模式对控制层的ONOS(Open Network Operating System)控制器实施5层平行建构,以保障网络安全态势的决策响应。利用流量探测模块内多探测器的部署,实现网络多源数据的深度挖掘;引入LEACH(Low Energy Adaptive Clustering Hierarchy)算法,在网络簇首实现多源数据融合。通过安全态势评估模块对网络入侵因子威胁等级进行分析后,结合权系数理论对网络态势威胁因子进行威胁度赋值,并结合网络层次划分法对运行网络服务层、主机层、网络层安全态势实施分层评估。实验表明,所提方法对网络数据运行状态分析能力较高,面对多类型网络威胁因子的攻击行为能做到精准识别,为网络安全运行提供重要保障。展开更多
Hierarchical identity-based signature (HIBS) has wide applications in the large network. However,the existing works cannot solve the trade-off between the security and efficiency. The main challenge at present is to...Hierarchical identity-based signature (HIBS) has wide applications in the large network. However,the existing works cannot solve the trade-off between the security and efficiency. The main challenge at present is to construct a high efficient and strong secure HIBS with a low computation cost. In this paper,a new construction of HIBS scheme is proposed. The new scheme achieves the adaptive security which is a strong security in the identity-based cryptography. But our scheme has short public parameters and the private keys size shrinks as the hierarchy depth increases. The signature size is a constant and the cost of verification only requires four bilinear pairings,which are independent of hierarchy depth. Furthermore,under the q-strong computational diffie-Hellman problem (q-SDH) assumption,the scheme is provably secure against existential forgery for adaptive chosen message and identity attack in the standard model.展开更多
New hierarchical direct time integration method for structural dynamic analysis is developed by using Taylor series expansions in each time step. Very accurate results can be obtained by increasing the order of the Ta...New hierarchical direct time integration method for structural dynamic analysis is developed by using Taylor series expansions in each time step. Very accurate results can be obtained by increasing the order of the Taylor series. Furthermore, the local error can be estimated by simply comparing the solutions obtained by the proposed method with the higher order solutions. This local estimate is then used to develop an adaptive order control technique. Numerical examples are given to illustrate the performance of the present method and its adaptive procedure.展开更多
基金Supported by the National "863" High Technology Project (2002AA412130)Natural Science Foundation of P. R. China (60474051)
文摘To solve the problem such as too many models, long computing time and so on, a hierarchical multiple models direct adaptive decoupling controller is designed. It consists of multiple levels. In the upper level, the best model is chosen according to the switching index. Then multiple fixed models are constructed on line to cover the region which the above chosen fixed model lies in.In the last level, one free-running and one re-initialized adaptive model are added to guarantee the stability and improve the transient response. By selection of the weighting polynomial matrix, it not only eliminates the steady output error and places the poles of the closed loop system arbitrarily, but also decouples the system dynamically. At last, for this multiple models switching system, global convergence is obtained under common assumptions. Compared with the conventional multiple models adaptive controller, it reduces the number of the fixed models greatly. If the same number of the fixed models is used, the system transient response and decoupling result are improved. The simulation example illustrates the power of the derived controller.
基金the General Program of National Natural Science Foundation of China(62072049).
文摘The rapid growth of modern mobile devices leads to a large number of distributed data,which is extremely valuable for learning models.Unfortunately,model training by collecting all these original data to a centralized cloud server is not applicable due to data privacy and communication costs concerns,hindering artificial intelligence from empowering mobile devices.Moreover,these data are not identically and independently distributed(Non-IID)caused by their different context,which will deteriorate the performance of the model.To address these issues,we propose a novel Distributed Learning algorithm based on hierarchical clustering and Adaptive Dataset Condensation,named ADC-DL,which learns a shared model by collecting the synthetic samples generated on each device.To tackle the heterogeneity of data distribution,we propose an entropy topsis comprehensive tiering model for hierarchical clustering,which distinguishes clients in terms of their data characteristics.Subsequently,synthetic dummy samples are generated based on the hierarchical structure utilizing adaptive dataset condensation.The procedure of dataset condensation can be adjusted adaptively according to the tier of the client.Extensive experiments demonstrate that the performance of our ADC-DL is more outstanding in prediction accuracy and communication costs compared with existing algorithms.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
基金supported by the National Natural Science Foundation of China(Grant Nos.41930102,41971339 and 41771423)Shandong University of Science and Technology Research Fund(No.2019TDJH103)。
文摘Landform elements with varying morphologies and spatial arrangements are recognized as feature indicator of landform classification and play a critical role in geomorphological studies.Differential geometry method has been extensively applied in prior landform element research,while its efficacy in differentiating similar morphological characteristics remains inadequate to date.To reduce reliance on geomorphometric variables and increase awareness of landform patterns,geomorphons method was generated in previous study corresponding to specific landform reclassification map based on lookup table.Besides,to address the problem of feature similarity,hierarchical classification was proposed and effectively utilized for terrain recognition through the analytical strategy of fuzzy gradient features.Thus,combining the advantages of these two aspects,a hierarchical framework was proposed in this study for landform element pattern recognition considering the morphology and hierarchy factors.First,the local triplet patterns derived from geomorphons were enhanced by setting the flatness threshold,and subsequently adopted for the primary landform element recognition.Then,as geomorphic units with the same morphology possess different spatial analytical scales,the unidentified landform elements under the principle of scale adaptation were determined by calculating the spatial correlation and entropy information.To ensure the effectiveness of this proposed method,the sampling points were randomly selected from NASADEM data and then validated against a real 3D terrain model.Quantitative results of landform element pattern recognition demonstrate that our approach can reach above 77%average accuracy.Additionally,it delineates local details more effectively than geomorphons in visual assessment,resulting in a 7%accuracy improvement in overall scale.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
文摘An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filter set up in You, Lin and Deng (1997). The result is shown below in three aspects. (l1 The variation of global temperature in this period is marked by warming on a large scale and can be divided into three stages of being cold (prior to 1919), warm (between 1920 and 1978) and warmer (since 1 979). Well-defined jumps are with the variation in correspondence with the hierarchical evolution on such scale, occurring in 1920 and 1979 when there is the most substantial jump towards warming. For the evolution on smaller scales, however, the variation has shown more of alternations of cold and warm temperatures. The preceding hierarchical structure and warming jump are added with new ones. (2) The trend in which temperature varies is much the same for China and the Yunnan Province, but it is not consistent with that globally, the largest difference being that a weak period of cold temperature in 1955 - 1978 across the globe was suspended in 1979 when it jumped to a significant warming,while a period of very cold temperature in 1955 - 1986 in China and Yunnan was not followed by warming in similar extent until 1987. (3) Though there are consistent hierarchical structure and jumping features throughout the year in Yunnan, significant changes with season are also present and the most striking difference is that temperature tends to vary consistently with China in winter and spring but with the globe in summer and fall.
基金Project supported by the Key Project of Hunan Provincial Educational Department of China (Grant No 04A058)the General Project of Hunan Provincial Educational Department of China (Grant No 07C754)the National Natural Science Foundation of China (Grant No 30570432)
文摘Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.
基金supported by the National Natural Science Foundation of China(Grant No.61170219)the Joint Research Foundation of the Ministry of Education of the People’s Republic of China and China Mobile(Grant No.MCM20150202)the Science and Technology Project Affiliated to Chongqing Education Commission(KJ1602201)
文摘How to energy-efficiently maintain the topology of wireless sensor networks(WSNs) is still a difficult problem because of their numerous nodes,highly dynamic nature,varied application scenarios and limited resources.An energy-efficient multi-mode clusters maintenance(M2CM) method is proposed based on localized and event-driven mechanism in this work,which is different from the conventional clusters maintenance model with always periodically re-clustered among the whole network style based on time-trigger for hierarchical WSNs.M2 CM can meet such demands of clusters maintenance as adaptive local maintenance for the damaged clusters according to its changes in time and space field.,the triggers of M2 CM include such events as nodes' residual energy being under the threshold,the load imbalance of cluster head,joining in or exiting from any cluster for new node or disable one,etc.Based on neighboring relationship of the damaged clusters,one can start a single cluster(inner-cluster) maintenance or clusters(inter-cluster) maintenance program to meet diverse demands in the topology management of hierarchical WSNs.The experiment results based on NS2 simulation show that the proposed method can significantly save energy used in maintaining a damaged network,effectively narrow down the influenced area of clusters maintenance,and increase transmitted data and prolong lifetime of network compared to the traditional schemes.
基金Liaoning Meteorological Bureau Scientific Research Program(202103*)Bohai Regional Science and Technology Collaborative Innovation Fund(QYXM201607)。
文摘This study explores the use of the hierarchical ensemble filter to determine the localized influence of observations in the Weather Research and Forecasting ensemble square root filtering(WRF-EnSRF)assimilation system.With error correlations between observations and background field state variables considered,the adaptive localization approach is applied to conduct a series of ideal storm-scale data assimilation experiments using simulated Doppler radar data.Comparisons between adaptive and empirical localization methods are made,and the feasibility of adaptive localization for storm-scale ensemble Kalman filter assimilation is demonstrated.Unlike empirical localization,which relies on prior knowledge of distance between observations and background field,the hierarchical ensemble filter provides continuously updating localization influence weights adaptively.The adaptive scheme improves assimilation quality during rapid storm development and enhances assimilation of reflectivity observations.The characteristics of both the observation type and the storm development stage should be considered when identifying the most appropriate localization method.Ultimately,combining empirical and adaptive methods can optimize assimilation quality.
文摘近年来,大模型推动自然语言处理、机器视觉等众多领域取得前所未有的进展.混合专家(mixture of experts,MoE)凭借在模型参数扩展、计算成本控制和复杂任务处理等方面的独特优势成为大模型的主流架构之一.然而,随着参数规模的持续增长,系统的执行效率和可扩展能力愈发难以满足需求,亟待解决.系统优化方法是解决这一挑战的有效途径,日益成为研究热点.故综述大模型时代MoE系统优化技术的研究现状,首先介绍MoE大模型的发展现状,并分析其在系统端面临的性能瓶颈;然后从内存占用、通信延迟、计算效率和并行扩展4个系统核心维度对最新的研究进展进行全面梳理和深入分析,并对其中涉及的关键技术、适用场景和待优化方向进行详细对比阐述;最后总结MoE系统优化的研究现状,并展望未来研究方向.
文摘In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.
基金supported by the National Natural Science Foundation of China (60970119, 60803149)the National Basic Research Program of China (2007CB311201)the Fundamental Research Funds for the Central Universities
文摘Hierarchical identity-based signature (HIBS) has wide applications in the large network. However,the existing works cannot solve the trade-off between the security and efficiency. The main challenge at present is to construct a high efficient and strong secure HIBS with a low computation cost. In this paper,a new construction of HIBS scheme is proposed. The new scheme achieves the adaptive security which is a strong security in the identity-based cryptography. But our scheme has short public parameters and the private keys size shrinks as the hierarchy depth increases. The signature size is a constant and the cost of verification only requires four bilinear pairings,which are independent of hierarchy depth. Furthermore,under the q-strong computational diffie-Hellman problem (q-SDH) assumption,the scheme is provably secure against existential forgery for adaptive chosen message and identity attack in the standard model.
文摘New hierarchical direct time integration method for structural dynamic analysis is developed by using Taylor series expansions in each time step. Very accurate results can be obtained by increasing the order of the Taylor series. Furthermore, the local error can be estimated by simply comparing the solutions obtained by the proposed method with the higher order solutions. This local estimate is then used to develop an adaptive order control technique. Numerical examples are given to illustrate the performance of the present method and its adaptive procedure.