The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation ...The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.展开更多
An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm...An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm and implemented the learned Q-tables to change the gains of linear PID controllers according to the state of the system during the control process.The adaptive PID controller based on Q-learning algorithm was trained from a set of fixed initial positions and was able to balance the system starting from a series of initial positions that are different from the ones used in the training session,which achieved equivalent or even better performances in comparison with the conventional PID controller and the controller only uses Q-learning algorithm.This indicates the advantage of the adaptive PID controller based on Q-learning algorithm both in the generality of balancing the cart–pole system from a relatively wide range of initial positions and in the stabilisability of achieving smaller steady-state error.展开更多
Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning ...Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.展开更多
In order to improve the efficiency and precision of maximum power point tracking(MPPT)control,a new method is proposed.Based on original MPPT technology of photovoltaic cells,the fuzzy adaptive proportion-integral-dif...In order to improve the efficiency and precision of maximum power point tracking(MPPT)control,a new method is proposed.Based on original MPPT technology of photovoltaic cells,the fuzzy adaptive proportion-integral-differential(PID)control has less fluctuation and higher stability.The simulation circuit using Simulink is established,and output power curves under constant temperature or constant sunlight are obtained.The superiority of the fuzzy PID control method has been proved by means of the simulation results,and it makes the solar system approach maximum power point quickly and smoothly.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the w...The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.展开更多
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be d...Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.展开更多
After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the ...After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation...Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.展开更多
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
文摘The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.
文摘An adaptive proportional–integral–derivative(PID)controller based on Q-learning algorithm is proposed to balance the cart–pole system in simulation environment.This controller was trained using Q-learning algorithm and implemented the learned Q-tables to change the gains of linear PID controllers according to the state of the system during the control process.The adaptive PID controller based on Q-learning algorithm was trained from a set of fixed initial positions and was able to balance the system starting from a series of initial positions that are different from the ones used in the training session,which achieved equivalent or even better performances in comparison with the conventional PID controller and the controller only uses Q-learning algorithm.This indicates the advantage of the adaptive PID controller based on Q-learning algorithm both in the generality of balancing the cart–pole system from a relatively wide range of initial positions and in the stabilisability of achieving smaller steady-state error.
基金Projects 0601033B supported by the Science Foundation for Post-doctoral Scientists of Jiangsu Province, 0C4466 and 0C060093the Scientific and Technological Foundation for Youth of China University of Mining & Technology
文摘Aimed at the lack of self-tuning PID parameters in conventional PID controllers, the structure and learning algorithm of an adaptive PID controller based on reinforcement learning were proposed. Actor-Critic learning was used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network was used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for complex nonlinear systems and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.
文摘In order to improve the efficiency and precision of maximum power point tracking(MPPT)control,a new method is proposed.Based on original MPPT technology of photovoltaic cells,the fuzzy adaptive proportion-integral-differential(PID)control has less fluctuation and higher stability.The simulation circuit using Simulink is established,and output power curves under constant temperature or constant sunlight are obtained.The superiority of the fuzzy PID control method has been proved by means of the simulation results,and it makes the solar system approach maximum power point quickly and smoothly.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
文摘The welding wire feed mechanism is an important component of welding equipment, both reliability and stabilization are the premise that the welding quality can be ensured. The PID is currently adapted to control the welding wire feed mechanism, although the fuzzy PID has advantage of fast response and adaptation, the precision of fuzzy PID is lower. Accordingly, the fuzzy self-adaptive PID controller was proposed through changing fuzzy input variables and output variables based on variable universe, simple furwtion is adopted as scaling factor, the fuzzy PID controller parameters are adjusted to improve the precision and adjustment range. Simulation results show that control effects of fuzzy self-adaptive PID adopted by the welding wire feed mechanism have good adaptive ability and robustness based on variable universe, the welding experiments indicate that the welding quality met the requirements actually.
基金Sponsored by the Ministerial Level Foundation(K130506)
文摘Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
基金Project Supported by Education Department of Liaoning Province(LT2012005)
文摘After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
文摘Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly.