A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a ph...A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.展开更多
Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the...Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.展开更多
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ...Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential so...The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.展开更多
The Longmenshan(LMS) fault zone is located at the junction of the eastern Tibetan Plateau and the Sichuan Basin and is of great significance for studying regional tectonics and earthquake hazards. Although regional ve...The Longmenshan(LMS) fault zone is located at the junction of the eastern Tibetan Plateau and the Sichuan Basin and is of great significance for studying regional tectonics and earthquake hazards. Although regional velocity models are available for the LMS fault zone, high-resolution velocity models are lacking. Therefore, a dense array of 240 short-period seismometers was deployed around the central segment of the LMS fault zone for approximately 30 days to monitor earthquakes and characterize fine structures of the fault zone. Considering the large quantity of observed seismic data, the data processing workflow consisted of deep learning-based automatic earthquake detection, phase arrival picking, and association. Compared with the earthquake catalog released by the China Earthquake Administration, many more earthquakes were detected by the dense array. Double-difference seismic tomography was adopted to determine V_(p), V_(s), and V_(p)/V_(s) models as well as earthquake locations. The checkerboard test showed that the velocity models have spatial resolutions of approximately 5 km in the horizontal directions and 2 km at depth. To the west of the Yingxiu–Beichuan Fault(YBF), the Precambrian Pengguan complex, where most of earthquakes occurred, is characterized by high velocity and low V_(p)/V_(s) values. In comparison, to the east of the YBF, the Upper Paleozoic to Jurassic sediments, where few earthquakes occurred, show low velocity and high V_(p)/V_(s) values. Our results suggest that the earthquake activity in the LMS fault zone is controlled by the strength of the rock compositions. When the high-resolution velocity models were combined with the relocated earthquakes, we were also able to delineate the fault geometry for different faults in the LMS fault zone.展开更多
The complex Red River fault zone(RRFZ), which is situated in the southwestern region of China and separates the Indochina plate and South China blocks, has diverse seismic activities in different segments. To reveal t...The complex Red River fault zone(RRFZ), which is situated in the southwestern region of China and separates the Indochina plate and South China blocks, has diverse seismic activities in different segments. To reveal the detailed geometric characteristics of the RRFZ at different sections and to better understand the seismogenic environment, in 2022 and 2023 we deployed 7 seismic dense linear arrays, consisting of 574 nodal stations, across the RRFZ in the northern and southern segments near the towns Midu, Gasa, Zhega,Dazhai, Xinzhai, and Taoyuan. The linear arrays, which extend from 2.4 to 12.5 km in length with station intervals ranging between 40 and140 m, recorded seismic ambient noise for approximately one month. Using the extended range phase shift method, we extract the phase velocity dispersion curves of the Rayleigh waves between 0.9 and 10 Hz, which are then used to invert for the high resolution shearwave velocity structures across the RRFZ beneath the linear arrays. The key findings are:(1) the 7 imaged sections of the RRFZ exhibit quite similar structures, with higher velocities on the SW side and lower velocities on the NE side;the velocity variation is consistent with the surface geological structures along the RRFZ;(2) the shear-wave velocities on the SW side of the RRFZ at the northern Midu section and southern Gasa-Dazhai sections are generally higher than their counterparts in the southern Xinzhai-Taoyuan sections, which reflects lithological variations from the marble-dominated Paleoproterozoic Along basement to the gneiss dominated Paleoproterozoic Qingshuihe basement;(3) from the northern Midu section to the southern region where the RRFZ intersects with the Xiaojiang Fault, the major faults of the RRFZ exhibit a consistent high-angle, NE-dipping structure;(4) the low shear-wave velocities immediately to the NE of the velocity boundary may indicate a faulted zone due to long-term shearing, where excessive amplifications of ground motions could occur. This study provides new insights into the characteristics of the shallow structures of the RRFZ.展开更多
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern...The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices.展开更多
Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband...Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.展开更多
A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat...A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat loaded monopole antenna arrays and is feasible to embed into a shallow cavity to further reduce the array height.Capacitance is introduced in the proposed antenna element to reduce profile height and the rectangular top hats are carefully designed to minimize the transverse dimension.Simulated results show that when the antenna array operates in a frequency range of 300 MHz-900 MHz,the end-fire radiation pattern achieves±45°scanning range in the horizontal plane.Then prototypes of the proposed end-fire antenna element and a uniformly spaced linear array(1×2)are fabricated and validated.The end-fire antenna array should be suitable for airborne applications where low-profile and conformal scanning phased antenna arrays with end-fire radiations are required.This design is attractive for airborne platform applications that are used to search,discover,identify,and scout the aerial target with vertically polarized beams.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS de...Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayedγ-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.展开更多
In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feas...In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feasible solution of first-level subarray tiling and employs the particle swarm algorithm to optimize the conformal array subarray tiling scheme with the maximum entropy of the planar mapping as the fitness function.Subsequently,convex optimization is applied to optimize the subarray amplitude phase.Data results verify that the method can effectively find the optimal conformal array tiling scheme.展开更多
Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an...Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.展开更多
This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange mult...This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange multiplier method,the motion equation governing this type of motion characteristic is formulated,and the formula of the extracted wave power is derived.The numerical results demonstrate a significant increase in the hydrodynamic efficiency of oscillating bodies within specific frequency ranges in the presence of the floating platform.The incorporation of proper power take-off damping of the oscillating bodies results in a reduction in the heave motion of the platform,but it may lead to an increase in pitch motion.The analysis of the response behaviour of the system shows that both the heave motion and pitch motion of the platform contribute to the power extraction and relative motion between the buoys and the platform.Parametric investigations are conducted to explore the hydrodynamic interactions between the floating platform and the buoy array.Additionally,the concept of“hydrodynamic synergy”is proposed to describe the synergetic effect of different components of a multi-purpose platform,which is of considerable engineering interest.展开更多
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,...The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.展开更多
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc...Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.展开更多
To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip...To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip was designed based on the specific structure of neurons and the requirements for detection and modulation.Finite-element analysis of the chip’s flow field was conducted using the COMSOL Multiphysics software,and the simulation results show that the liquid within the chip can flow smoothly,ensuring stable flow fields that facilitate the uniform growth of neurons within the microfluidic channels.By employing MEMS technology in combination with nanomaterial modification techniques,the microfluidic microelectrode array chip was fabricated successfully.Primary hippocampal neurons were cultured on the chip,forming a well-defined neural network.Spontaneous electrical activity of the detected neurons was recorded,exhibiting a 23.7%increase in amplitude compared to neuronal discharges detected on an open-field microelectrode array.This study provides a platform for the precise detection and modulation of patterned neuronal growth in vitro,potentially serving as a novel tool in neuroscience research.展开更多
Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in...Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.展开更多
基金The National Natural Science Foundation of China(No.62401168,62401139,62401170)China Postdoctoral Science Foundation(No.2023MD744197)+2 种基金Postdoctoral Fellowship Program of CPSF(No.GZC20230631)Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi(No.2023KY0218)Guangxi Key Laboratory Foundation of Optoelectronic Information Processing(No.GD23102)。
文摘A programmable low-profile array antenna based on nematic liquid crystals(NLCs)is proposed.Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360°with high linearity.First,the above 64 antenna units are periodically arranged into an 8×8 NLC-based antenna array,and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array(FPGA)programming sequences.This configuration enables precise phase changes for all 64 channels.Numerical simulation,sample processing,and experimental measurements of the antenna array are conducted to validate the performance of the antenna.The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz,with a 3 dB relative bandwidth of 10%and a maximum main lobe gain of 14.1 dBi.A maximum scanning angle of±34°is achieved through the adjustment of the FPGA programming sequence.This NLC-based programmable array antenna shows promising potential for applications in satellite communication.
基金supported by China National Science Foundations(Nos.62371225,62371227)。
文摘Sparse array design has significant implications for improving the accuracy of direction of arrival(DOA)estimation of non-circular(NC)signals.We propose an extended nested array with a filled sensor(ENAFS)based on the hole-filling strategy.Specifically,we first introduce the improved nested array(INA)and prove its properties.Subsequently,we extend the sum-difference coarray(SDCA)by adding an additional sensor to fill the holes.Thus the larger uniform degrees of freedom(uDOFs)and virtual array aperture(VAA)can be abtained,and the ENAFS is designed.Finally,the simulation results are given to verify the superiority of the proposed ENAFS in terms of DOF,mutual coupling and estimation performance.
基金supported by the Ministry of Science and Technology SKA Special Project(2020SKA0110202)the Special Project on Building a Science and Technology Innovation Center for South and Southeast Asia–International Joint Innovation Platform in Yunnan Province:"Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology"(202303AP140003)+4 种基金the National Natural Science Foundation of China (NSFC) Joint Fund for Astronomy (JFA) incubator program (U2031133)the International Partnership Program Project of the International Cooperation Bureau of the Chinese Academy of Sciences:"Belt and Road"Cooperation (114A11KYSB20200001)the Kunming Foreign (International) Cooperation Base Program:"Yunnan Observatory of the Chinese Academy of Sciences-University of Malaya Joint R&D Cooperation Base for Advanced Radio Astronomy Technology"(GHJD-2021022)the China-Malaysia Collaborative Research on Space Remote Sensing and Radio Astronomy Observation of Space Weather at Low and Middle Latitudes under the Key Special Project of the State Key R&D Program of the Ministry of Science and Technology for International Cooperation in Science,Technology and Innovation among Governments (2022YFE0140000)the High-precision calibration method for low-frequency radio interferometric arrays for the SKA project of the Ministry of Science and Technology(2020SKA0110300).
文摘Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20240613)Jiangsu Province’s“Innovation and Entrepreneurship Doctor”Program(Grant No.JSSCBS20230088)+4 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY224123)Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY222112)Beijing Nova Program(Grant No.20240484696)Wenzhou Major Science and Technology Innovation Key Project(Grant No.ZG2020046)INNOVATION Program for Quantum Science and Technology(Grant No.2021ZD0303200)。
文摘The topic of improving the mechanical stability of external cavity diode lasers(ECDLs)has recently attracted widespread attention and interest.The use of corner-cube-array(CCA)-based resonators provides a potential solution for this purpose,although continuous oscillation at super large incident angle remains challenging.In this work,we employ the CCA resonator to generate continuous oscillation within±20°angular misalignment of cavity mirror in experiment.On the basis of retroreflection theory,the retroreflectivity of a CCA is analyzed by using optical simulation software.Notably,the experiment verifies the advantage of using a CCA over a plane mirror in laser resonator,thereby providing a promising approach for ECDLs.The threshold characteristic curves measured at different incident angles in the experiment verify that the CCA possesses an obvious anti-angle misalignment performance.This research introduces an alternative solution of using CCA resonator instead of parallel plane cavity,thereby realizing an adjustment-free ECDL with enhanced mechanical stability.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology under Grant 2024yjrc64the National Key R&D Program of China under Grant 2018YFC1504102。
文摘The Longmenshan(LMS) fault zone is located at the junction of the eastern Tibetan Plateau and the Sichuan Basin and is of great significance for studying regional tectonics and earthquake hazards. Although regional velocity models are available for the LMS fault zone, high-resolution velocity models are lacking. Therefore, a dense array of 240 short-period seismometers was deployed around the central segment of the LMS fault zone for approximately 30 days to monitor earthquakes and characterize fine structures of the fault zone. Considering the large quantity of observed seismic data, the data processing workflow consisted of deep learning-based automatic earthquake detection, phase arrival picking, and association. Compared with the earthquake catalog released by the China Earthquake Administration, many more earthquakes were detected by the dense array. Double-difference seismic tomography was adopted to determine V_(p), V_(s), and V_(p)/V_(s) models as well as earthquake locations. The checkerboard test showed that the velocity models have spatial resolutions of approximately 5 km in the horizontal directions and 2 km at depth. To the west of the Yingxiu–Beichuan Fault(YBF), the Precambrian Pengguan complex, where most of earthquakes occurred, is characterized by high velocity and low V_(p)/V_(s) values. In comparison, to the east of the YBF, the Upper Paleozoic to Jurassic sediments, where few earthquakes occurred, show low velocity and high V_(p)/V_(s) values. Our results suggest that the earthquake activity in the LMS fault zone is controlled by the strength of the rock compositions. When the high-resolution velocity models were combined with the relocated earthquakes, we were also able to delineate the fault geometry for different faults in the LMS fault zone.
基金funded by the National Key Research and Development Project of China (Grant No. 2021YFC3000600)the China Earthquake Science Experiment Field-Cross-fault Observation Array-Red River Fault Scientific Drilling Project Geophysical Prospecting Site Selection Project+2 种基金Anhui Province Science and Technology Breakthrough Plan Project (Key Project,202423l10050030)the Earthquake Science and Technology Spark Program of the China Earthquake Administration (XH23020YA)the Anhui Mengcheng National Geophysical Observatory Joint Open Fund (MENGO-202307)。
文摘The complex Red River fault zone(RRFZ), which is situated in the southwestern region of China and separates the Indochina plate and South China blocks, has diverse seismic activities in different segments. To reveal the detailed geometric characteristics of the RRFZ at different sections and to better understand the seismogenic environment, in 2022 and 2023 we deployed 7 seismic dense linear arrays, consisting of 574 nodal stations, across the RRFZ in the northern and southern segments near the towns Midu, Gasa, Zhega,Dazhai, Xinzhai, and Taoyuan. The linear arrays, which extend from 2.4 to 12.5 km in length with station intervals ranging between 40 and140 m, recorded seismic ambient noise for approximately one month. Using the extended range phase shift method, we extract the phase velocity dispersion curves of the Rayleigh waves between 0.9 and 10 Hz, which are then used to invert for the high resolution shearwave velocity structures across the RRFZ beneath the linear arrays. The key findings are:(1) the 7 imaged sections of the RRFZ exhibit quite similar structures, with higher velocities on the SW side and lower velocities on the NE side;the velocity variation is consistent with the surface geological structures along the RRFZ;(2) the shear-wave velocities on the SW side of the RRFZ at the northern Midu section and southern Gasa-Dazhai sections are generally higher than their counterparts in the southern Xinzhai-Taoyuan sections, which reflects lithological variations from the marble-dominated Paleoproterozoic Along basement to the gneiss dominated Paleoproterozoic Qingshuihe basement;(3) from the northern Midu section to the southern region where the RRFZ intersects with the Xiaojiang Fault, the major faults of the RRFZ exhibit a consistent high-angle, NE-dipping structure;(4) the low shear-wave velocities immediately to the NE of the velocity boundary may indicate a faulted zone due to long-term shearing, where excessive amplifications of ground motions could occur. This study provides new insights into the characteristics of the shallow structures of the RRFZ.
基金This work was supported by the National Research Foundation,Singapore under Award No.NRF-CRP24-2020-0002.
文摘The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices.
基金financial support from the National Natural Science Foundation of China(Nos.21776026,22075034,and 22178037)the Liaoning Revitalization Talents Program,China(Nos.XLYC1902037 and XLYC2002114)the Natural Science Foundation of Liaoning Province of China(No.2021-MS-303)。
文摘Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.
文摘A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat loaded monopole antenna arrays and is feasible to embed into a shallow cavity to further reduce the array height.Capacitance is introduced in the proposed antenna element to reduce profile height and the rectangular top hats are carefully designed to minimize the transverse dimension.Simulated results show that when the antenna array operates in a frequency range of 300 MHz-900 MHz,the end-fire radiation pattern achieves±45°scanning range in the horizontal plane.Then prototypes of the proposed end-fire antenna element and a uniformly spaced linear array(1×2)are fabricated and validated.The end-fire antenna array should be suitable for airborne applications where low-profile and conformal scanning phased antenna arrays with end-fire radiations are required.This design is attractive for airborne platform applications that are used to search,discover,identify,and scout the aerial target with vertically polarized beams.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金supported by the National Key R&D Program of China (Nos. 2022YFA1603300, 2018YFA0404401, 2023YFA1606701, and 2022YFA1602301)National Natural Science Foundation of China (Nos. U1867211, 12275026, and 12222514)the CAS Light of West China Program (No. 2020-82)
文摘Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayedγ-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.
基金supported by the Advanced Functional Composites Technology Key Laboratory Fund under Grant No.6142906220404Sichuan Province Centralized Guided Local Science and Technology Development Special Project under Grant No.2022ZYD0121。
文摘In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feasible solution of first-level subarray tiling and employs the particle swarm algorithm to optimize the conformal array subarray tiling scheme with the maximum entropy of the planar mapping as the fitness function.Subsequently,convex optimization is applied to optimize the subarray amplitude phase.Data results verify that the method can effectively find the optimal conformal array tiling scheme.
基金supported by the National Natural Science Foundation of China(22278241)the National Key R&D Program of China(2018YFA0901700)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
基金supported by the National Key Research and Development Project of China(Grant No.2023YFC3106904)National Natural Science Foundation of China(Grant No.52001086)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.3072023JC0101)Additionally,this work contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)under contract UIDB/UIDP/00134/2020.
文摘This paper presents a hydrodynamic analysis of a hybrid system consisting of a floating platform coupled with an array of oscillating bodies that move along the weather sidewall of the platform.Using the Lagrange multiplier method,the motion equation governing this type of motion characteristic is formulated,and the formula of the extracted wave power is derived.The numerical results demonstrate a significant increase in the hydrodynamic efficiency of oscillating bodies within specific frequency ranges in the presence of the floating platform.The incorporation of proper power take-off damping of the oscillating bodies results in a reduction in the heave motion of the platform,but it may lead to an increase in pitch motion.The analysis of the response behaviour of the system shows that both the heave motion and pitch motion of the platform contribute to the power extraction and relative motion between the buoys and the platform.Parametric investigations are conducted to explore the hydrodynamic interactions between the floating platform and the buoy array.Additionally,the concept of“hydrodynamic synergy”is proposed to describe the synergetic effect of different components of a multi-purpose platform,which is of considerable engineering interest.
基金This work has been supported by National Key R&D Program of China No.2022YFF0503804.
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
基金supported by National Key Research and Development Program of China under Grant 2020YFB1804901State Key Laboratory of Rail Traffic Control and Safety(Contract:No.RCS2022ZT 015)Special Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau(cstc2019jscx-fxydX0053).
文摘Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.
基金sponsored by the National Natural Science Foundation of China (Grant Nos.61960206012,62121003,T2293731,62171434,61975206,61971400,and 61973292)the National Key Research and Development Program of China (Grant Nos.2022YFB3205602 and 2022YFC2402501)+1 种基金Major Program of Scientific and Technical Innovation 2030 (Grant No.2021ZD02016030)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No.GJJSTD20210004).
文摘To enable the detection and modulation of modularized neural networks in vitro,this study proposes a microfluidic microelectrode array chip for the cultivation,compartmentalization,and control of neural cells.The chip was designed based on the specific structure of neurons and the requirements for detection and modulation.Finite-element analysis of the chip’s flow field was conducted using the COMSOL Multiphysics software,and the simulation results show that the liquid within the chip can flow smoothly,ensuring stable flow fields that facilitate the uniform growth of neurons within the microfluidic channels.By employing MEMS technology in combination with nanomaterial modification techniques,the microfluidic microelectrode array chip was fabricated successfully.Primary hippocampal neurons were cultured on the chip,forming a well-defined neural network.Spontaneous electrical activity of the detected neurons was recorded,exhibiting a 23.7%increase in amplitude compared to neuronal discharges detected on an open-field microelectrode array.This study provides a platform for the precise detection and modulation of patterned neuronal growth in vitro,potentially serving as a novel tool in neuroscience research.
基金supported by the Young Potential Program of the Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai Rising-Star Program,China(No.22YF1457800)the Chinese Academy of Sciences Youth Education Fund Program(No.E2292502)Gansu Major Scientific and Technological Special Project(No.23ZDGH001)。
文摘Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods.