期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:7
1
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
在线阅读 下载PDF
基于SSA-CG-Attention模型的多因素采煤工作面涌水量预测 被引量:3
2
作者 丁莹莹 尹尚先 +6 位作者 连会青 刘伟 李启兴 祁荣荣 卜昌森 夏向学 李书乾 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第4期111-119,共9页
矿井工作面涌水量预测对确保矿山安全、优化资源配置、提高工作效率等都具有重要作用。为提高预测结果的准确性和稳定性,基于钻孔水位和微震能量数据与涌水量的强关联性,选择其作为多因素特征变量,提出SSA-CG-Attention多因素矿井工作... 矿井工作面涌水量预测对确保矿山安全、优化资源配置、提高工作效率等都具有重要作用。为提高预测结果的准确性和稳定性,基于钻孔水位和微震能量数据与涌水量的强关联性,选择其作为多因素特征变量,提出SSA-CG-Attention多因素矿井工作面涌水量预测模型。该模型在门控循环单元(GatedRecurrentUnit,GRU)提取时序特征的基础上,与卷积神经网络(ConvolutionalNeuralNet-work,CNN)融合形成新的网络结构提取数据的有效非线性局部特征,并且加入注意力机制(Atten-tion),在预测过程中将注意力集中在输入元素上,提高模型的准确性。最后通过麻雀搜索算法(Spar-row Search Algorithm,SSA)优化模型参数,避免局部最优解的问题。将提出的模型分别与传统的BP神经网络、LSTM、GRU单因素涌水量预测模型以及MLP、SLP、SVR、LSTM、GRU、SSA-LSTM、SSA-GRU多因素涌水量预测模型的预测结果进行对比分析,结果表明:SSA算法以最少迭代次数快速寻优,避免了局部最优解的缺陷;SSA-CG-Attention多因素涌水量预测模型整体预测指标绝对误差(E_(MA))、均方根误差(E_(RMS))以及平均绝对百分比误差(E_(MAP))分别为5.24 m^(3)/h、7.25 m^(3)/h、6%,指标方差和为8.90。相较于其他预测模型预测精度更高,相较于单因素涌水量预测模型,多因素涌水量预测模型预测结果更加稳定。研究结果为矿井工作面涌水量预测提供了新的思路与方法,对矿井工作面涌水量预测及防控有着借鉴与指导作用,具有一定的理论价值和现实意义。 展开更多
关键词 涌水量预测 卷积神经网络 门控循环单元 注意力机制 多因素预测 微震能量
在线阅读 下载PDF
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法 被引量:1
3
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
在线阅读 下载PDF
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测 被引量:2
4
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
在线阅读 下载PDF
基于Attention-GRU模型的酿酒葡萄蒸腾量预测
5
作者 李英豪 施爱平 范欣竹 《排灌机械工程学报》 CSCD 北大核心 2024年第11期1181-1188,共8页
针对酿酒葡萄蒸腾量影响因素的复杂性、各影响因子间的非线性等问题,提出主成分分析、注意力机制(Attention)以及门控循环单元(gated recurrent unit,GRU)相结合的模型来预测酿酒葡萄蒸腾量,采用宁夏立兰酒庄连续时间段内传感器监测数... 针对酿酒葡萄蒸腾量影响因素的复杂性、各影响因子间的非线性等问题,提出主成分分析、注意力机制(Attention)以及门控循环单元(gated recurrent unit,GRU)相结合的模型来预测酿酒葡萄蒸腾量,采用宁夏立兰酒庄连续时间段内传感器监测数据作为样本进行分析,同时建立长短时记忆神经网络(LSTM)和未引入Attention机制的GRU神经网络进行对比分析.结果表明,Attention-GRU模型的均方根误差、均方误差和平均绝对误差分别为0.423 mm,0.179和0.355 mm,与LSTM模型相比,其各项误差分别降低了0.122 mm,0.118和0.083 mm;与未引入Attention机制的GRU模型相比,其各项误差分别降低了0.259 mm,0.286和0.161 mm.该模型具有较高的预测精度和泛化能力,可以为酿酒葡萄需水量研究提供依据. 展开更多
关键词 酿酒葡萄 蒸腾量 神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于CNN-GRU-Attention的道岔故障诊断算法研究
6
作者 王凡 甄子洋 邓敏 《机械与电子》 2024年第6期10-15,共6页
道岔是关系列车运行安全的铁路信号基础设备之一。通过分析道岔运行过程的功率数据,可以有效判断道岔的运行状况。为实现对道岔故障自动、高效、准确的诊断,研究并提出了一种基于深度学习的故障诊断方法。首先利用卷积神经网络提取数据... 道岔是关系列车运行安全的铁路信号基础设备之一。通过分析道岔运行过程的功率数据,可以有效判断道岔的运行状况。为实现对道岔故障自动、高效、准确的诊断,研究并提出了一种基于深度学习的故障诊断方法。首先利用卷积神经网络提取数据空间性特征,再调用门控循环单元网络提取时间性特征,再引入注意力机制对特征进行权重分配,最后使用Softmax分类器进行分类。在对比实验中用多种指标评定该方法的性能,结果表明,所提方法相较于基础方法和另外2种现有方法在诊断性能上有着显著的优势。 展开更多
关键词 道岔故障诊断 卷积神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
7
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
在线阅读 下载PDF
基于Attention机制优化CNN-GRU混合神经网络的短期负荷预测技术
8
作者 刘会 岳东明 +3 位作者 苗光尧 王乐乐 王国彬 朱慧娴 《电工技术》 2024年第9期20-23,共4页
电力系统负荷预测实质是对电力市场需求的预测,短期电力负荷预测是电力部门的重要工作之一。目前主要的负荷预测方法有传统预测、灰色预测、混沌理论预测、智能技术预测、优选组合预测等,其中智能预测中最典型的就是人工神经网络。人工... 电力系统负荷预测实质是对电力市场需求的预测,短期电力负荷预测是电力部门的重要工作之一。目前主要的负荷预测方法有传统预测、灰色预测、混沌理论预测、智能技术预测、优选组合预测等,其中智能预测中最典型的就是人工神经网络。人工神经网络是一个极其复杂的非线性动力学系统。它的自学习功能对预测有着重要的意义,能通过学习历史负荷数据来反映出输入变量和输出变量之间的非线性关系。由于很多因素都会对电力负荷造成影响,因此可以把神经网络算法引用到负荷预测中,提高电力负荷的预测精度。基于宁夏电网短期电力负荷预测的实际需求,提出了一种基于Attention机制优化CNN-GRU混合神经网络的短期负荷预测技术。该技术通过引入Attention机制对CNN-GRU模型进行改进,有效提升了预测精度和可解释性。在宁夏电网实际数据集上进行的仿真实验表明所提出的模型具有较高的预测准确性和可靠性。 展开更多
关键词 短期负荷预测 卷积神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于Attention-GRU的短期光伏发电功率预测 被引量:37
9
作者 刘国海 孙文卿 +2 位作者 吴振飞 陈兆岭 左致远 《太阳能学报》 EI CAS CSCD 北大核心 2022年第2期226-232,共7页
针对传统长短时记忆神经网络(LSTM)参数量较多以及在处理长时间序列时容易忽略重要时序信息的不足,提出一种结合注意力机制(attention)与门控循环单元(GRU)的Attention-GRU短期光伏发电功率预测模型。首先,基于改进相似日理论建立新的... 针对传统长短时记忆神经网络(LSTM)参数量较多以及在处理长时间序列时容易忽略重要时序信息的不足,提出一种结合注意力机制(attention)与门控循环单元(GRU)的Attention-GRU短期光伏发电功率预测模型。首先,基于改进相似日理论建立新的数据集;然后,利用门控循环单元提取光伏发电功率的时序特征,引入注意力机制加强对时序输入中重要信息的关注;最终构建针对不同天气类型的预测模型。仿真结果表明,提出的模型与对比模型相比,预测精度更高。 展开更多
关键词 光伏发电 功率预测 神经网络 注意力机制 门控循环单元
在线阅读 下载PDF
基于CNN-BIGRU-ATTENTION的短期电力负荷预测 被引量:17
10
作者 方娜 余俊杰 +1 位作者 李俊晓 万畅 《计算机仿真》 北大核心 2022年第2期40-44,82,共6页
电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进... 电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进行抽取;其次,利用BIGRU对潜藏的时序规律进行提取;最后结合ATTENTION机制,突出关键特征。仿真结果表明,与BP网络、CNN-GRU、CNN-BIGRU和CNN-GRU-ATTENTION混合模型的预测结果相比,上述模型具有更高的预测精度,是一种有效的短期负荷预测方法。 展开更多
关键词 短期负荷预测 注意力机制 卷积神经网络 双向门控循环单元 混合模型
在线阅读 下载PDF
基于GRU-Attention神经网络的空中群组态势识别方法 被引量:4
11
作者 苟先太 吴南方 《计算机与现代化》 2019年第10期11-16,33,共7页
现代空中战场中,对敌方空中作战群组意图判定的结果将直接影响我方对局势的掌握和决策的下达,因此空中群组态势的评估识别是现代战场的重要任务。空中作战群组通常会根据飞行任务执行相应意图,监测相关过程并从获取的数据中挖掘相应的特... 现代空中战场中,对敌方空中作战群组意图判定的结果将直接影响我方对局势的掌握和决策的下达,因此空中群组态势的评估识别是现代战场的重要任务。空中作战群组通常会根据飞行任务执行相应意图,监测相关过程并从获取的数据中挖掘相应的特征,再通过智能化的方法进行学习预测。基于此,本文提出一种基于GRU-Attention神经网络的识别方法,将获取的行为事件库预处理后输入门控循环(GRU)神经网络挖掘事件中深层特征;注意力机制(Attention)为深层特征自动计算相应的权重分配;最后利用softmax层对输入的信息进行态势意图分类。实验结果表明GRU-Attention态势识别方法的准确率达到96.10%,验证了该方法的准确性、高效性和稳定性。该方法的提出对丰富神经网络识别方法体系和提高空中群组态势的评估识别准确率具有重要的理论意义和实践意义。 展开更多
关键词 群组态势识别 门控循环神经网络 注意力机制
在线阅读 下载PDF
基于HDCNN-BIGRU-Attention油田措施效果预测模型 被引量:1
12
作者 张强 李志溢 邓彬 《吉林大学学报(信息科学版)》 CAS 2023年第4期631-638,共8页
为预测油田增油控水措施效果中月产油量与含水量,提出一种基于混合空洞卷积神经网络(HDCNN:Hybrid Dilated Convolutional Neural Network)-BIGRU-Attention的措施效果预测模型。模型通过HDCNN,提取生产数据多尺度全局特征;针对措施生... 为预测油田增油控水措施效果中月产油量与含水量,提出一种基于混合空洞卷积神经网络(HDCNN:Hybrid Dilated Convolutional Neural Network)-BIGRU-Attention的措施效果预测模型。模型通过HDCNN,提取生产数据多尺度全局特征;针对措施生产数据时序性较强与波动性较大的特点,利用双向门控循环单元(BIGRU:Bidirectional Gated Recurrent Unit)充分挖掘数据间长期依赖关系,提高时序信息利用率与学习效果;引入缩放点积注意力模块(Attention),为重要信息赋予较高权重并不断调整参数使模型始终关注与预测目标相关性较大的特征。为验证模型的有效性,将LSTM(Long Short-Term Memory)、CNN(Convolutional Neural Network)-LSTM以及LSTM-Attention作为实验对比,结果表明该模型具有更低的预测误差与更好的泛化能力。 展开更多
关键词 油田措施效果预测 双向门控循环单元 混合空洞卷积神经网络 缩放点积注意力机制
在线阅读 下载PDF
基于SSA-CNN-BiGRU-Attention的超短期风电功率预测模型 被引量:5
13
作者 李青 张新燕 +2 位作者 马天娇 张正 李志潭 《电机与控制应用》 2023年第5期61-71,共11页
针对风电功率预测精度较低的问题,提出一种融合奇异谱分析(SSA)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)及Attention机制的组合预测模型。为抑制风电功率随机波动特性带来的预测功率曲线滞后性问题,采用SSA方法将原始数据序列分... 针对风电功率预测精度较低的问题,提出一种融合奇异谱分析(SSA)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)及Attention机制的组合预测模型。为抑制风电功率随机波动特性带来的预测功率曲线滞后性问题,采用SSA方法将原始数据序列分解为一系列相对平稳的子分量,并基于各分量模糊熵(FE)值完成各分解分量的有效重构;构建了CNN-BiGRU-Attention模型并用于各重构分量建模预测,其中,CNN网络用以实现各重构分量高维数据特征的有效提取,BiGRU网络用以完成CNN获取的关键特征向量非线性动态变化规律的有效捕捉,Attention机制的引入用于加强对功率数据关键特征的有效学习;通过叠加基于CNN-BiGRU-Attention模型的各重构分量预测值得到最终预测结果。以新疆哈密地区风电场实际运行采集数据为试验样本进行算例分析,结果表明,所提方法可有效缓解风电功率预测结果滞后现象,预测精度全面优于其他预测方法。 展开更多
关键词 风电功率预测 奇异谱分析 卷积神经网络 双向门控循环单元 attention机制
在线阅读 下载PDF
基于CNN-BiGRU-Attention的非侵入式负荷分解 被引量:1
14
作者 任智仁 汤博 +3 位作者 周弼 薛雷 易灵芝 刘西蒙 《电机与控制应用》 2022年第8期41-46,52,共7页
随着智能电网的迅速发展,为了有效提高电能的使用率,合理规划电能资源,建立全国范围内的智能用电和负荷监测系统,非侵入式负荷监测(NILM)和分解问题一直受到广泛关注。为提高非侵入性负载分解性能,提出一种基于耦合神经网络的非侵入式... 随着智能电网的迅速发展,为了有效提高电能的使用率,合理规划电能资源,建立全国范围内的智能用电和负荷监测系统,非侵入式负荷监测(NILM)和分解问题一直受到广泛关注。为提高非侵入性负载分解性能,提出一种基于耦合神经网络的非侵入式负荷分解方法。首先,对数据集进行归一化和预处理。其次,构建一种将卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的混合深度学习模型,对数据的空间特性和时序特性进行充分挖掘,并加入注意力机制,关注重要信息,剔除冗余特征。最后,采用国内自测数据集进行试验,使用不同的评价指标对该耦合神经网络进行评估,并与其他的常用分解模型进行对比。试验结果表明,所提方法的均值绝对误差与绝对误差和相较于其他分解方法都有所降低,均值绝对误差平均下降了35.9%,绝对误差和平均下降了39.9%。 展开更多
关键词 非侵入式负荷分解 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
融合MultiHead Attention和BiGRU的入侵检测模型 被引量:1
15
作者 樊景威 葛丽娜 +1 位作者 张壕 李登辉 《计算机与数字工程》 2023年第1期74-80,共7页
近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型... 近年来,入侵检测技术在网络安全中扮演着越来越重要的角色。目前的入侵检测模型所用的方法大部分是基于传统机器学习的浅层方法。浅层机器学习方法不能有效发掘数据特征,在入侵检测中存在一定的局限性。为此,论文提出了一种深度学习模型,该模型结合了多头注意力(multiHead attention)和双向门循环单元(BiGRU)。模型使用多头注意力和双向门循环单元从空间和时间上处理网络攻击流量,有效缓解模型复杂性,同时增加模型表现力。此外,使用最大池化方法(maxpooling)来平衡训练速度和性能,不但可以提取序列的边缘特征,还能帮助扩大感受野,由于数据不平衡会影响模型性能表现,因此使用随机过采样(Random Over Sampling)方法来处理数据不平衡的问题。实验基于UNSW-NB15数据集和CIC-IDS2017数据集,并使用准确率(Accuracy)、精确率(Precision)、召回率(Recall)和f1分数作为评估指标。实验结果表明,模型性能优秀。 展开更多
关键词 多头注意力 双向门控循环单元 神经网络 入侵检测
在线阅读 下载PDF
基于AT_CNN与Attention-BiGRU融合网络的电网故障报修信息的自动分类研究 被引量:5
16
作者 曹渝昆 赵田 《计算机应用与软件》 北大核心 2021年第5期93-98,116,共7页
随着经济和信息化的快速发展,电网规模的不断扩大,电网用户的故障报修数量呈逐年上升的趋势。针对目前电网用户故障报修工单难以自动化分析和处理的问题,提出一种基于AT_CNN算法与Attention-BiGRU的融合网络,该网络可将以上两种互补模... 随着经济和信息化的快速发展,电网规模的不断扩大,电网用户的故障报修数量呈逐年上升的趋势。针对目前电网用户故障报修工单难以自动化分析和处理的问题,提出一种基于AT_CNN算法与Attention-BiGRU的融合网络,该网络可将以上两种互补模型提取的局部特征和整体特征进行拼接融合。其中的AT_CNN算法利用Attention池化与Top k池化结合的方法对池化层进行改进,能更好提取上下文的文本特征。结果表明,该方法在公共数据集上的分类准确率较传统深度学习方法显著提高,在电网故障报修工单数据上的分类准确率可以达到95.71%。 展开更多
关键词 卷积神经网络 门控循环单元 文本分类 注意力机制 池化
在线阅读 下载PDF
基于BiGRU-CNN-Attention模型的股市评论情感分析 被引量:3
17
作者 季威志 薛雷 《工业控制计算机》 2020年第4期70-72,共3页
人们对股市的评论能够反映出股票投资人对股市的关注程度以及投资意向,对股市评论进行情感分析有利于证券投资机构和个人投资者做出更合理的投资决策。爬取了东方财富网股吧的股市评论记录,选取其中9000条评论作为股市评论数据集,将双... 人们对股市的评论能够反映出股票投资人对股市的关注程度以及投资意向,对股市评论进行情感分析有利于证券投资机构和个人投资者做出更合理的投资决策。爬取了东方财富网股吧的股市评论记录,选取其中9000条评论作为股市评论数据集,将双向门控循环单元、卷积神经网络和注意力机制结合,对该股市评论数据集进行情感分析研究,并采用GRU、BiGRU、BiGRU-Attention、CNN-BiGRU算法与之比较。实验结果表明,BiGRU-CNN-Attention网络模型在准确率(accuracy)、精确率(precision)、召回率(recall)和F1值(F-measure)均有较好表现,非常适用于该类短文本数据的情感分析。 展开更多
关键词 双向门控循环单元 卷积神经网络 注意力机制 股市评论情感分析
在线阅读 下载PDF
基于语义分类的物联网固件中第三方组件识别
18
作者 马峰 于丹 +2 位作者 杨玉丽 马垚 陈永乐 《计算机工程与设计》 北大核心 2025年第1期274-281,共8页
为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转... 为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转化为词嵌入表示,通过卷积神经网络和双向门控循环单元分别提取语义信息局部特征和全局特征,经过多头注意力机制区分关键语义特征,输入到Softmax分类器中实现可用于识别组件的语义信息分类。通过在10个流行的物联网生产商发布的5453个固件上进行实验,验证了该方法可有效识别第三方组件。 展开更多
关键词 物联网 软件供应链 固件安全 短文本分类 卷积神经网络 双向门控循环单元 多头注意力
在线阅读 下载PDF
基于GRU-NN预测模型的压电作动器MPC-KAN控制方法
19
作者 郭辰星 李自成 徐瑞瑞 《压电与声光》 北大核心 2025年第1期157-162,171,共7页
为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型... 为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型预测控制(MPC)的输出。首先,根据线性化模型选择GRU-NN的训练输入特征,并训练该网络。然后,为了提高优化效果和缩短优化时间,将麻雀搜索算法(SSA)用作MPC优化器,并建立Kolmogorov-Arnold网络(KAN)以替代SSA优化。该方法的有效性在PEAs平台上得到验证,与传统方法相比,控制精度提高了约30%。 展开更多
关键词 压电陶瓷作动器 高精度跟踪 模型预测控制 GRU网络 KAN网络
在线阅读 下载PDF
基于改进双重压缩和激励与多头特征注意力机制的电-热负荷协同预测
20
作者 余强 韩静娴 +4 位作者 杨子梁 宋济东 杨德昌 齐海杰 于芃 《电力自动化设备》 北大核心 2025年第3期201-208,共8页
综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注... 综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注意力对卷积结果进行赋权,并利用输入门控循环单元模型对负荷进行预测。算例仿真结果表明,所提模型的平均绝对百分比误差均低于3%。 展开更多
关键词 综合能源系统 负荷预测 分组卷积神经网络 门控循环单元 改进的压缩和激励注意力机制 多头特征注意力机制
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部