This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A...In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.展开更多
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
基金supported by the National Natural Science Foundation of China(91538201)
文摘In order to estimate the systematic error in the processof maneuvering target adaptive tracking, a new method is proposed.The proposed method is a linear tracking scheme basedon a modified input estimation approach. A special augmentationin the state space model is considered, in which both the systematicerror and the unknown input vector are attached to thestate vector. Then, an augmented state model and a measurementmodel are established in the case of systematic error, andthe corresponding filter formulas are also given. In the proposedscheme, the original state, the acceleration and the systematicerror vector can be estimated simultaneously. This method can notonly solve the maneuvering target adaptive tracking problem in thecase of systematic error, but also give the system error value inreal time. Simulation results show that the proposed tracking algorithmoperates in both the non-maneuvering and the maneuveringmodes, and the original state, the acceleration and the systematicerror vector can be estimated simultaneously.