期刊文献+
共找到670篇文章
< 1 2 34 >
每页显示 20 50 100
Modeling and Forecasting of Consumer Price Index of Foods and Non-Alcoholic Beverages in Kenya Using Autoregressive Integrated Moving Average Models
1
作者 Michael Mbaria Chege 《Open Journal of Statistics》 2024年第6期677-688,共12页
Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world ove... Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world over years has continued to make food and non-alcoholic beverages not to be accessible and affordable to individuals and families having a low income. The aim of this particular research study was to identify how Kenya’s CPI of food and non-alcoholic beverages could be modelled using Autoregressive Integrated Moving Average (ARIMA) models for forecasting future values for the next two years. The data used for the study was that of Kenya’s CPI of food and non-alcoholic beverages for the period starting from February 2009 to April 2024 obtained from the International Monetary Fund (IMF) database. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) and assessing whether residuals of the model were independent and normally distributed with a variance that is constant an whether the model has most of its coefficients being significant statistically. ARIMA (3, 1, 0) (1, 0, 0) model was identified as the best ARIMA model for modeling Kenya’s CPI of food and non-beverages for forecasting future values among the ARIMA models considered. Using this particular model, Kenya’s CPI of food and non-alcoholic beverages was forecasted to increase only slightly with time to reach a value of about 165.70 by March 2026. 展开更多
关键词 Consumer Price Index Food and Non-Alcoholic Beverages autoregressive Integrated moving averages modeling and Forecasting
在线阅读 下载PDF
Modelling and Forecasting of Greenhouse Gas Emissions by the Energy Sector in Kenya Using Autoregressive Integrated Moving Average (ARIMA) Models
2
作者 Michael Mbaria Chege 《Open Journal of Statistics》 2024年第6期667-676,共10页
The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector ... The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector using ARIMA models for forecasting future values. The data used for the study was that of Kenya’s GHG emissions by the energy sector for the period starting from 1970 to 2022 obtained for the International Monetary Fund (IMF) database that was split into training and testing sets using the 80/20 rule for modelling purposes. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE). ARIMA (1, 1, 1) was identified as the best model for modelling Kenya’s GHG emissions and forecasting future values. Using this model, Kenya’s GHG emissions by the energy sector were forecasted to increase to a value of about 43.13 million metric tons of carbon dioxide equivalents by 2030. The study, therefore, recommends that Kenya should accelerate the adjustment of industry structure and improve the efficient use of energy, optimize the energy structure and accelerate development and promotion of energy-efficient products to reduce the emission of GHGs by the country’s energy sector. 展开更多
关键词 Greenhouse Gases Energy Sector autoregressive moving averages models
在线阅读 下载PDF
Autoregressive moving average model as a multi-agent routing protocol for wireless sensor networks 被引量:2
3
作者 黄如 黄浩 +1 位作者 陈志华 何兴勇 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期421-426,共6页
A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive m... A prediction-aided routing algorithm based on ant colony optimization mode (PRACO) to achieve energy-aware data-gathering routing structure in wireless sensor networks (WSN) is presented. We adopt autoregressive moving average model (ARMA) to predict dynamic tendency in data traffic and deduce the construction of load factor, which can help to reveal the future energy status of sensor in WSN. By checking the load factor in heuristic factor and guided by novel pheromone updating rule, multi-agent, i. e. , artificial ants, can adaptively foresee the local energy state of networks and the corresponding actions could be taken to enhance the energy efficiency in routing construction. Compared with some classic energy-saving routing schemes, the simulation results show that the proposed routing building scheme can ① effectively reinforce the robustness of routing structure by mining the temporal associability and introducing multi-agent optimization to balance the total energy cost for data transmission, ② minimize the total communication consumption, and ③prolong the lifetime of networks. 展开更多
关键词 wireless sensor networks (WSN) autoregressive moving average arma MULTIAGENT ROUTING ROBUSTNESS
在线阅读 下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
4
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 Auto-Regressive and moving-average (arma) modeling probability distributions extreme wind speeds
在线阅读 下载PDF
Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models
5
作者 Chuanjiang Huang Fangli Qiao Hongyu Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期106-113,共8页
Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and a... Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress. 展开更多
关键词 noise Kalman filtering autoregressive moving average model TURBULENCE acoustic Doppler velocimeter
在线阅读 下载PDF
Cyclic moving average control approach to cylinder pressure and its experimental validation 被引量:1
6
作者 Po LI Tielong SHEN +1 位作者 Junichi KAKO Kaipei LIU 《控制理论与应用(英文版)》 EI 2009年第4期345-351,共7页
Cyclic variability is a factor adversely affecting engine performance. In this paper a cyclic moving average regulation approach to cylinder pressure at top dead center (TDC) is proposed, where the ignition time is ... Cyclic variability is a factor adversely affecting engine performance. In this paper a cyclic moving average regulation approach to cylinder pressure at top dead center (TDC) is proposed, where the ignition time is adopted as the control input. The dynamics from ignition time to the moving average index is described by ARMA model. With this model, a one-step ahead prediction-based minimum variance controller (MVC) is developed for regulation. The performance of the proposed controller is illustrated by experiments with a commercial car engine and experimental results show that the controller has a reliable effect on index regulation when the engine works under different fuel injection strategies, load changing and throttle opening disturbance. 展开更多
关键词 In-cylinder pressure balancing Cyclic moving average modeling arma model MVC
在线阅读 下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
7
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (arma) model feedback linear estimation basis time-varying function spectral estimation
在线阅读 下载PDF
ARMA-GM combined forewarning model for the quality control
8
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (arma) grey system model (GM) combined forewarning model quality control.
在线阅读 下载PDF
基于ARMAV模型和J-散度的结构损伤识别
9
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(armaV)模型 J-散度 时间序列分析
在线阅读 下载PDF
Online Fault Prediction Based on Combined AOSVR and ARMA Models
10
作者 Da-Tong Liu Yu Peng Xi-Yuan Peng 《Journal of Electronic Science and Technology of China》 2009年第4期303-307,共5页
Accurate fault prediction can obviously reduce cost and decrease the probability of accidents so as to improve the performance of the system testing and maintenance. Traditional fault prediction methods are always off... Accurate fault prediction can obviously reduce cost and decrease the probability of accidents so as to improve the performance of the system testing and maintenance. Traditional fault prediction methods are always offline that are not suitable for online and real-time processing. For the complicated nonlinear and non-stationary time series, it is hard to achieve exact predicting result with single models such as support vector regression (SVR), artifieial neural network (ANN), and autoregressive moving average (ARMA). Combined with the accurate online support vector regression (AOSVR) algorithm and ARMA model, a new online approach is presented to forecast fault with time series prediction. The fault trend feature can be extracted by the AOSVR with global kernel for general fault modes. Moreover, its prediction residual that represents the local high-frequency components is synchronously revised and compensated by the sliding time window ARMA model. Fault prediction with combined AOSVR and ARMA can be realized better than with the single one. Experiments on Tennessee Eastman process fault data show the new method is practical and effective. 展开更多
关键词 Accurate online support vector regression (AOSVR) autoregressive moving average arma combined predicttion fault prediction time series.
在线阅读 下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
11
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network Forecasting Stock market
在线阅读 下载PDF
基于ARMA模型的隧道变形预测及参数估计分析
12
作者 刘君伟 杨晓辉 《市政技术》 2024年第7期54-60,共7页
以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模... 以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模型进行参数估计,给出了模型关键参数,构建了合理的预测模型。将模型预测结果与实测数据进行对比,显示预测结果与实测数据变化趋势高度吻合,充分验证了预测模型的可行性、有效性与稳定性。 展开更多
关键词 地铁隧道 arma模型 变形预测 时间序列
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
13
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
基于高阶累积量ARMA模型线性非线性结合的地震子波提取方法研究 被引量:23
14
作者 戴永寿 王俊岭 +2 位作者 王伟伟 魏磊 王少水 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期1851-1859,共9页
在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的... 在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的基础上,利用累积量拟合法精确估计参数.理论分析和仿真结果表明,该方式有较好的适应性:一方面提高了子波估计精度,避免单独使用矩阵方程法在短数据地震记录情况下可能带来的估计误差;另一方面提高了子波提取运算效率,降低了ARMA模型拟合方法参数范围确定的复杂性,避免了单纯使用滑动平均(MA)模型拟合法估计过多参数所导致的运算规模过大问题.初步应用结果表明该方法是有效可行的. 展开更多
关键词 高阶累积量 子波提取 自回归滑动平均 线性非线性结合
在线阅读 下载PDF
基于小波变换和GM-ARMA的导弹备件消耗预测 被引量:7
15
作者 赵建忠 徐廷学 +1 位作者 葛先军 尹延涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第4期553-558,共6页
针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的... 针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的过程中,提出了先对小波基方程和分解层数2个特征进行参数化,再定量地对所有子模型的特征参数进行统一、综合的评估,以达到建立最佳组合模型的目的;然后对具有平稳特性的高频信息用阻尼最小二乘法优化的ARMA(Autoregressive and Moving Average)模型进行预测,对反映整体趋势体现非平稳的低频信息用背景值优化和数据变换技术改进的GM(1,1)模型进行预测.实例结果表明所提出的组合预测方法大大降低了预测误差,说明了该方法的有效性、可行性和实用性. 展开更多
关键词 小波变换 灰色模型 自回归移动平均模型 备件 消耗预测
在线阅读 下载PDF
用对称映射ARMA模型的零极点研究子波相位对反射系数序列反演的影响 被引量:4
16
作者 张亚南 戴永寿 +3 位作者 陈健 魏玉琴 丁进杰 张漫漫 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期2043-2054,共12页
为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列... 为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列反演.理论分析表明,子波相位估计不准时反射系数序列反演结果中残留一个纯相位滤波器,该纯相位滤波器的相位谱为真实子波和构造子波的相位谱之差.采用丰度和变分作为评价方法,在反演结果中确定出真实的或准确的反射系数序列.仿真实验和实际数据处理结果也验证了子波相位对反射系数序列反演的影响规律和评价方法的有效性,为进一步提高反射系数序列反演结果精度指明了研究方向. 展开更多
关键词 地震子波 反射系数序列反演 纯相位滤波器 自回归滑动平均模型 评价方法
在线阅读 下载PDF
基于改进灰色ARMA模型的卫星钟差短期预报研究 被引量:19
17
作者 李晓宇 杨洋 +1 位作者 胡晓粉 贾蕊溪 《大地测量与地球动力学》 CSCD 北大核心 2013年第1期59-63,共5页
导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相... 导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相加。在算例中采用IGS提供的精密钟差进行预报,仿真结果表明钟差精度较高。 展开更多
关键词 钟差预报 改进灰色模型 arma 组合模型 钟差精度
在线阅读 下载PDF
高效ARMA模型高分辨率地震子波提取方法 被引量:4
18
作者 张亚南 戴永寿 +2 位作者 王少水 彭星 牛慧 《石油地球物理勘探》 EI CSCD 北大核心 2011年第5期686-694,836+660,共9页
ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(S... ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(SVD)法确定AR模型阶数,同时将信息量准则法与高阶累积量法相结合,提出了一种新的MA模型定阶法。数值仿真和实际地震数据处理结果均表明,本文所用方法可有效地压制加性高斯色噪声,信息量准则法可有效提高MA定阶的准确率,在保证子波精度的同时尽可能降低模型阶数,实现运算高效率。 展开更多
关键词 地震子波 高阶累积量 自回归滑动平均(arma) 奇异值分解(SVD) 信息量准则
在线阅读 下载PDF
基于Mallat算法与ARMA模型的露天矿卡车故障率预测 被引量:12
19
作者 白润才 柴森霖 +2 位作者 刘光伟 李浩然 张靖 《中国安全科学学报》 CAS CSCD 北大核心 2018年第10期31-37,共7页
为提高露天矿山运输卡车故障率预测精度、降低因非平稳时间序列数据造成的精度损失及有效解决模型参数估计困难等问题,提出一种基于小波分析与自回归滑动平均模型(ARMA)的露天矿山卡车故障率预测方法。首先,根据矿山时间序列数据的非平... 为提高露天矿山运输卡车故障率预测精度、降低因非平稳时间序列数据造成的精度损失及有效解决模型参数估计困难等问题,提出一种基于小波分析与自回归滑动平均模型(ARMA)的露天矿山卡车故障率预测方法。首先,根据矿山时间序列数据的非平稳特征,采用Mallat算法分频处理原始数据,将原始的时间序列分解为一组近似系数和多组细节系数;然后,采用ARMA模型拟合与预测单支重构后的小波系数;其次,引入模型的相关变量,将ARMA模型的参数估计问题转化为带有相关变量的多维高斯分布参数估计问题;最后,通过计算模型中的典型相关变量实现ARMA模型的定阶与参数估计并与其他算法模型进行对比。结果表明:采用此法预测测试集数据,绝对误差的平均值为0. 322,相对误差的平均值为5. 49%;这说明此种组合模型具有更高的拟合精度,应用该模型进行卡车故障率预测是可行且有效的。 展开更多
关键词 露天矿山卡车 故障率 预测方法 小波分析 自回归滑动平均模型(arma)
在线阅读 下载PDF
基于自适应ARMA模型的区域农业总产值构成研究与应用 被引量:8
20
作者 张洁瑕 郝晋珉 胡吉敏 《农业工程学报》 EI CAS CSCD 北大核心 2008年第8期84-88,共5页
由于噪声的存在并随时间累积,传统的自回归滑动平均模型(ARMA模型)不能直接应用于时间序列的中期预测。该文针对这种情况,提出了一种自适应的自回归滑动平均模型,将模型状态划分为无噪声的迭代模型和有噪声的观察模型,并根据迭代模型的... 由于噪声的存在并随时间累积,传统的自回归滑动平均模型(ARMA模型)不能直接应用于时间序列的中期预测。该文针对这种情况,提出了一种自适应的自回归滑动平均模型,将模型状态划分为无噪声的迭代模型和有噪声的观察模型,并根据迭代模型的特点,详细推导并完整给出了它的迭代求解公式,以便使其可以用于时间序列的中期预测,同时研究1985~2001年黄淮海平原农业、牧业与渔业产值预测模型,得到较理想的预测结果。并用所建模型对2001年产值进行外延预测,以期为区域农业结构调整提供理论依据。 展开更多
关键词 自适应 arma模型 中期预测 农业总产值
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部