The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector ...The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector using ARIMA models for forecasting future values. The data used for the study was that of Kenya’s GHG emissions by the energy sector for the period starting from 1970 to 2022 obtained for the International Monetary Fund (IMF) database that was split into training and testing sets using the 80/20 rule for modelling purposes. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE). ARIMA (1, 1, 1) was identified as the best model for modelling Kenya’s GHG emissions and forecasting future values. Using this model, Kenya’s GHG emissions by the energy sector were forecasted to increase to a value of about 43.13 million metric tons of carbon dioxide equivalents by 2030. The study, therefore, recommends that Kenya should accelerate the adjustment of industry structure and improve the efficient use of energy, optimize the energy structure and accelerate development and promotion of energy-efficient products to reduce the emission of GHGs by the country’s energy sector.展开更多
Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world ove...Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world over years has continued to make food and non-alcoholic beverages not to be accessible and affordable to individuals and families having a low income. The aim of this particular research study was to identify how Kenya’s CPI of food and non-alcoholic beverages could be modelled using Autoregressive Integrated Moving Average (ARIMA) models for forecasting future values for the next two years. The data used for the study was that of Kenya’s CPI of food and non-alcoholic beverages for the period starting from February 2009 to April 2024 obtained from the International Monetary Fund (IMF) database. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) and assessing whether residuals of the model were independent and normally distributed with a variance that is constant an whether the model has most of its coefficients being significant statistically. ARIMA (3, 1, 0) (1, 0, 0) model was identified as the best ARIMA model for modeling Kenya’s CPI of food and non-beverages for forecasting future values among the ARIMA models considered. Using this particular model, Kenya’s CPI of food and non-alcoholic beverages was forecasted to increase only slightly with time to reach a value of about 165.70 by March 2026.展开更多
Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and a...Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress.展开更多
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ...Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.展开更多
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发...为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。展开更多
目的:探讨基于R语言构建的自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)对医用耗材消耗量的预测效果。方法:选取某类预冲式冲管注射器2018年7月至2023年6月月度消耗量数据作为样本数据,利用R语言对样本...目的:探讨基于R语言构建的自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)对医用耗材消耗量的预测效果。方法:选取某类预冲式冲管注射器2018年7月至2023年6月月度消耗量数据作为样本数据,利用R语言对样本数据进行平稳性检验、差分运算等处理,根据赤池信息准则和贝叶斯信息准则,构建ARIMA模型并确定最优模型。以2023年第三季度相应数据作为验证集进行消耗情况预测,并与实际使用情况进行对比,评价ARIMA模型的预测效果。结果:拟合最优的ARIMA模型为ARIMA(0,1,1)(1,0,0)12,预测数据均在95%置信区间,其平均绝对百分比误差为9.92%,使用Ljung-Box统计量对残差序列进行检验时P>0.05,预测结果较为理想。结论:基于R语言的ARIMA模型对医用耗材消耗量预测效果较好,为医用耗材的需求计划制订、预算、采购、管理等工作提供了参考。展开更多
文摘The energy sector is the second largest emitter of greenhouse (GHG) gases in Kenya, emitting about 31.2% of GHG emissions in the country. The aim of this study was to model Kenya’s GHG emissions by the energy sector using ARIMA models for forecasting future values. The data used for the study was that of Kenya’s GHG emissions by the energy sector for the period starting from 1970 to 2022 obtained for the International Monetary Fund (IMF) database that was split into training and testing sets using the 80/20 rule for modelling purposes. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE). ARIMA (1, 1, 1) was identified as the best model for modelling Kenya’s GHG emissions and forecasting future values. Using this model, Kenya’s GHG emissions by the energy sector were forecasted to increase to a value of about 43.13 million metric tons of carbon dioxide equivalents by 2030. The study, therefore, recommends that Kenya should accelerate the adjustment of industry structure and improve the efficient use of energy, optimize the energy structure and accelerate development and promotion of energy-efficient products to reduce the emission of GHGs by the country’s energy sector.
文摘Food and non-alcoholic beverages are highly important for individuals to continue staying alive and living healthy lives. The increase in the prices of food and non-alcoholic beverages experienced across the world over years has continued to make food and non-alcoholic beverages not to be accessible and affordable to individuals and families having a low income. The aim of this particular research study was to identify how Kenya’s CPI of food and non-alcoholic beverages could be modelled using Autoregressive Integrated Moving Average (ARIMA) models for forecasting future values for the next two years. The data used for the study was that of Kenya’s CPI of food and non-alcoholic beverages for the period starting from February 2009 to April 2024 obtained from the International Monetary Fund (IMF) database. The best specification for the ARIMA model was identified using Akaike Information Criterion (AIC), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) and assessing whether residuals of the model were independent and normally distributed with a variance that is constant an whether the model has most of its coefficients being significant statistically. ARIMA (3, 1, 0) (1, 0, 0) model was identified as the best ARIMA model for modeling Kenya’s CPI of food and non-beverages for forecasting future values among the ARIMA models considered. Using this particular model, Kenya’s CPI of food and non-alcoholic beverages was forecasted to increase only slightly with time to reach a value of about 165.70 by March 2026.
基金The National Key Research and Development Program of China under contract No.2017YFC1404000the Basic Scientific Fund for National Public Research Institutes of China under contract No.2018S03the National Natural Science Foundation of China under contract Nos 41776038 and 41821004
文摘Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress.
基金financially supported by the Health and Family Planning Commission of Hubei Province(No.WJ2017F047)the Health and Family Planning Commission of Wuhan(No.WG17D05)
文摘Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
文摘目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜宾市第二人民医院)的平均住院费用和住院日数据建立时间序列ARIMA预测模型。结果住院费用最优模型为ARIMA(0,1,1),赤池信息准则(Akaike information criterion,AIC)=924.35,贝叶斯信息准则(Bayesian Information Criterion,BIC)=928.51,残差Ljung-Box Q=12.51(P=0.768),可认为残差序列为白噪声。平均住院日的最优模型为ARIMA(5,1,1),AIC=87.49,BIC=104.11,残差Ljung-Box Q=10.05(P=0.612),可认为残差序列为白噪声。2022年1—12月实际值与预测值基本吻合,月人均住院费用和人均住院日的平均相对误差为0.55%、0.29%。结论建立基于时间序列ARIMA模型能够为合理配置卫生资源提供强有力的数据支撑。
文摘为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。
文摘目的:探讨基于R语言构建的自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)对医用耗材消耗量的预测效果。方法:选取某类预冲式冲管注射器2018年7月至2023年6月月度消耗量数据作为样本数据,利用R语言对样本数据进行平稳性检验、差分运算等处理,根据赤池信息准则和贝叶斯信息准则,构建ARIMA模型并确定最优模型。以2023年第三季度相应数据作为验证集进行消耗情况预测,并与实际使用情况进行对比,评价ARIMA模型的预测效果。结果:拟合最优的ARIMA模型为ARIMA(0,1,1)(1,0,0)12,预测数据均在95%置信区间,其平均绝对百分比误差为9.92%,使用Ljung-Box统计量对残差序列进行检验时P>0.05,预测结果较为理想。结论:基于R语言的ARIMA模型对医用耗材消耗量预测效果较好,为医用耗材的需求计划制订、预算、采购、管理等工作提供了参考。