期刊文献+
共找到10,453篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Backstepping Slide Mode Control of Pneumatic Position Servo System 被引量:12
1
作者 REN Haipeng FAN Juntao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1003-1009,共7页
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia... With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking 展开更多
关键词 pneumatic position servo system adaptive backstepping design slide mode control uncertain parameter tracking accuracy
在线阅读 下载PDF
Modeling and sliding mode control based on inverse compensation of piezo-positioning system
2
作者 LI Zhi-bin XIN Yuan-ze +1 位作者 ZHANG Jian-qiang SUN Chong-shang 《中国光学(中英文)》 北大核心 2025年第1期170-185,共16页
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis... In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system. 展开更多
关键词 piezo-positioning system hysteresis nonlinearity Hammerstein model Prandtl-Ishlinskii(P-I)model system identification sliding mode control
在线阅读 下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:31
3
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKstepping control theory Design Functions Hypersonic aerodynamics Hypersonic vehicles Navigation Radial basis function networks Sliding mode control Uncertainty analysis Vehicles
在线阅读 下载PDF
Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table 被引量:11
4
作者 刘金琨 孙富春 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期65-71,共7页
Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th... Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time. 展开更多
关键词 nominal model sliding mode control backstepping control robust control 3-axis flight table
在线阅读 下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:13
5
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control BACKstepping controllers Functions Learning algorithms Radial basis function networks Robust control Robustness (control systems) Sliding mode control Uncertainty analysis
在线阅读 下载PDF
Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking 被引量:9
6
作者 Chutiphon Pukdeboon 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期826-839,共14页
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint... This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers. 展开更多
关键词 attitude tracking control sliding mode control back-stepping design finite-time convergence.
在线阅读 下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:13
7
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
在线阅读 下载PDF
Sliding mode control for an aerodynamic missile based on backstepping design 被引量:8
8
作者 WenjinGU HongchaoZHAO ChangpengPAN 《控制理论与应用(英文版)》 EI 2005年第1期71-75,共5页
In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs... In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method. 展开更多
关键词 mismatched uncertainties sliding mode control backstepping design aerodynamic missile
在线阅读 下载PDF
Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle 被引量:12
9
作者 Chao Yang Feng Yao Ming-Jun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期228-243,共16页
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ... The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV. 展开更多
关键词 Autonomous underwater vehicle(AUV) Trajectory tracking Neural networks Backstepping method Terminal sliding mode Adaptive control
在线阅读 下载PDF
Adaptive sliding mode backstepping control for near space vehicles considering engine faults 被引量:5
10
作者 ZHAO Jing JIANG Bin +2 位作者 XIE Fei GAO Zhifeng XU Yufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期343-351,共9页
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin... A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance. 展开更多
关键词 fault tolerant control adaptive sliding mode(ASM) engine fault near space vehicle(NSV)
在线阅读 下载PDF
Adaptive Backstepping Sliding Mode Control for Nonlinear Systems with Input Saturation 被引量:5
11
作者 ZHANG Hongmei ZHANG Guoshan 《Transactions of Tianjin University》 EI CAS 2012年第1期46-51,共6页
An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive c... An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive capabilities of neural networks (NNs).The control law and adaptive updating laws of NNs are derived in the sense of Lyapunov function,so the stability can be guaranteed even under the input saturation.The proposed control law is robust against the disturbance,and it can also eliminate the impact of input saturation.Simulation results indicate that the proposed controller has a good performance. 展开更多
关键词 nonlinear system input saturation adaptive backstepping control sliding mode control neural network
在线阅读 下载PDF
Robust force tracking control via backstepping sliding mode control and virtual damping control for hydraulic quadruped robots 被引量:4
12
作者 SHEN Wei Lü Xiao-bin MA Chen-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2673-2686,共14页
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ... In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment. 展开更多
关键词 hydraulic quadruped robot impedance control backstepping sliding mode control virtual damping control
在线阅读 下载PDF
Backstepping sliding mode control with self recurrent wavelet neural network observer for a novel coaxial twelve-rotor UAV 被引量:2
13
作者 Qiao Guanyu Peng Cheng 《High Technology Letters》 EI CAS 2018年第2期142-148,共7页
The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematic... The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments. 展开更多
关键词 coaxial twelve-rotor UAV backstepping sliding mode control BSMC self re-current wavelet neural network (SRWNN) model uncertainties external disturbances
在线阅读 下载PDF
Backstepping Sliding Mode Control Based on Extended State Observer for Hydraulic Servo System 被引量:1
14
作者 Zhenshuai Wan Yu Fu +1 位作者 Chong Liu Longwang Yue 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3565-3581,共17页
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint... Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme. 展开更多
关键词 Hydraulic servo system nonlinear behaviors modeling uncertainties backstepping control sliding mode control extended state observer
在线阅读 下载PDF
Application of Adaptive Backstepping Sliding Mode Control in Alternative Current Servo System of Rocket Launcher
15
作者 郭亚军 马大为 +1 位作者 王晓峰 乐贵高 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第3期140-144,共5页
An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapun... An adaptive backstepping sliding mode control approach is introduced to control the pitch motion of a rocket launcher. Its control law is proposed to guarantee that the control system is ultimately bounded in a Lyapunov sense and make the servo system track the instruction of reference position globally and asymptotically. In addition, the sliding mode control can restrain the effects of parameter uncertainties and external disturbance. The functions of adaptive mechanism and sliding mode control are analyzed through the simulation in the different conditions.The simulation results illustrate that the method is applicable and robust. 展开更多
关键词 automatic control technology rocket launcher sliding mode control adaptive backstepping permanent magnet synchronous motor
在线阅读 下载PDF
A switching-based backstepping sliding mode control for space manipulator in presence of gravity variation
16
作者 Liu Fucai Zhao Wenna +1 位作者 Meng Lingcong Liu Shuo 《High Technology Letters》 EI CAS 2021年第4期454-462,共9页
A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating c... A novel switching-based backstepping sliding mode control(SBSMC) scheme is devised for the space manipulator exposed to different gravity.With a view to distinct differences in dynamics properties when the operating conclition of space manipulator changer,the space manipulator can be thought of as a system composed of two subsystems,the ground subsystem and the space subsystem.Two different types of backstepping sliding mode(BSM) controllers are designed,one is suited for the ground subsystem and the other is for the space one.The switching between two subsystems can be implemented automatically when the switching mechanism is triggered,and the controllers for their subsystems experience synchronous switching.In this way,the space manipulator always has good behaviors in trajectory tracking.Moreover,multi-Lyapunov functions are introduced to prove the stability of this switching approach.According to simulation results,the method constructed in this research has better performance in control precision and adaptability compared with proportional-derivative(PD) control. 展开更多
关键词 space manipulator MICROGRAVITY switching system multi-Lyapunov functions backstepping sliding mode control(BSMC)
在线阅读 下载PDF
Second order sliding mode control with back stepping approach for moving mass spinning missiles
17
作者 郭鹏飞 杨树兴 赵良玉 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期17-22,共6页
An attitude controller using the second order sliding mode control methodology with a backstepping approach(SOSMCB)is designed and implemented for a spinning missile with two internal moving mass blocks.The system c... An attitude controller using the second order sliding mode control methodology with a backstepping approach(SOSMCB)is designed and implemented for a spinning missile with two internal moving mass blocks.The system consists of a rigid body and two radial internal moving mass blocks and its mathematical model is established based on Newtonian mechanics.The control scheme integrates a second order sliding mode control algorithm into the last step of the backstepping approach,and its stability is proved by means of a Lyapunov function.The performance of the controller is demonstrated by numerical simulations,the results show that the attitude controller is stable and effective. 展开更多
关键词 spinning missile moving mass backstepping second order sliding mode control
在线阅读 下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking 被引量:1
18
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
在线阅读 下载PDF
A Stable Fuzzy-Based Computational Model and Control for Inductions Motors 被引量:1
19
作者 Yongqiu Liu Shaohui Zhong +3 位作者 Nasreen Kausar Chunwei Zhang Ardashir Mohammadzadeh Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期793-812,共20页
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se... In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997. 展开更多
关键词 Sliding mode control self-tuning type-2 fuzzy systems inductions motor parameters uncertainty
在线阅读 下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
20
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部