期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
BP neural network classification on passenger vehicle type based on GA of feature selection 被引量:2
1
作者 秦慧超 胡红萍 白艳萍 《Journal of Measurement Science and Instrumentation》 CAS 2012年第3期251-254,共4页
This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and... This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and ratio of height and length.And then we apply this optimal feature subset as well as another feature set,containing length,width and height,to the network input.Back-propagation(BP)neural network and support vector machine(SVM)are applied to classify the passenger vehicle type.There are four passenger vehicle types.This paper selects 400 samples of passenger vehicles,among which 320 samples are used as training set(each class has 80 samples)and the other 80 samples as testing set,taking the feature of the samples as network input and taking four passenger vehicle types as output.For the test,we have applied BP neural network to choose the optimal feature subset as network input,and the results show that the total classification accuracy rate can reach 96%,and the classification accuracy rate of first type can reach 100%.In this condition,we obtain a conclusion that this algorithm is better than the traditional ones[9]. 展开更多
关键词 genetic algorithm(GA) feature selection back-propagation(bp)network passenger vehicles type
在线阅读 下载PDF
Modeling and Simulation of Time Series Prediction Based on Dynamic Neural Network
2
作者 王雪松 程玉虎 彭光正 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期148-151,共4页
Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic... Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series. 展开更多
关键词 time series Jordan neural network(NN) back-propagation (bp) algorithm temporal difference (TD) method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部