Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th...Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.展开更多
针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺...针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。展开更多
目前基于蚁群算法的路径规划用于多约束条件下寻找最优路径时,容易陷入局部最优解并导致收敛速度慢.为此,在路径长度、有效景点区域数量、路径平滑性和路径障碍距离等约束条件下,构造一种适应度函数模型,以评价漫游路径的质量.提出混合...目前基于蚁群算法的路径规划用于多约束条件下寻找最优路径时,容易陷入局部最优解并导致收敛速度慢.为此,在路径长度、有效景点区域数量、路径平滑性和路径障碍距离等约束条件下,构造一种适应度函数模型,以评价漫游路径的质量.提出混合细菌觅食优化思想的改进蚁群优化(bacterial foraging optimization and ant colony optimization,BFO-ACO)算法,采用禁忌表优化策略解决传统蚁群算法的死锁问题,提高算法初期的路径多样性,通过引入细菌觅食算法的复制和驱散机制,提高收敛速度,跳出局部最优值.实验结果表明,BFO-ACO算法可在多约束环境下以较少的迭代次数获得高质量的漫游路径,为漫游路径设计提供了参考.展开更多
基金supported in part by the National Natural Science Foundation of China(62073330)in part by the Natural Science Foundation of Hunan Province(2019JJ20021,2020JJ4339)in part by the Scientific Research Fund of Hunan Province Education Department(20B272)。
文摘Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.
文摘针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。
文摘目前基于蚁群算法的路径规划用于多约束条件下寻找最优路径时,容易陷入局部最优解并导致收敛速度慢.为此,在路径长度、有效景点区域数量、路径平滑性和路径障碍距离等约束条件下,构造一种适应度函数模型,以评价漫游路径的质量.提出混合细菌觅食优化思想的改进蚁群优化(bacterial foraging optimization and ant colony optimization,BFO-ACO)算法,采用禁忌表优化策略解决传统蚁群算法的死锁问题,提高算法初期的路径多样性,通过引入细菌觅食算法的复制和驱散机制,提高收敛速度,跳出局部最优值.实验结果表明,BFO-ACO算法可在多约束环境下以较少的迭代次数获得高质量的漫游路径,为漫游路径设计提供了参考.