期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
1
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于改进BILSTM/BIGRU的多特征短期负荷预测
2
作者 王昊 王树东 唐伟强 《计算机与数字工程》 2025年第3期755-759,864,共6页
针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分... 针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分解,降低负荷数据复杂度;利用互信息主成分分析法提取原始多维输入变量,降低主成分因子;然后通过改进鲸鱼优化算法对构建模型进行寻参优化。以中国某地区的负荷数据作为算例,将论文所构建模型与其它模型进行了对比分析,预测结果表明,论文所构建的模型能够缩短预测的时间,提高负荷预测的精度。 展开更多
关键词 负荷预测 深度双向策略 改进鲸鱼优化算法 长短期记忆神经网络 门控循坏单元神经网络
在线阅读 下载PDF
基于改进MFCC-OCSVM和贝叶斯优化BiGRU的GIS异常工况声纹识别算法
3
作者 庄小亮 李乾坤 +3 位作者 刘紫罡 张禄亮 季天瑶 张长虹 《南方电网技术》 北大核心 2025年第1期30-40,共11页
为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循... 为了准确识别气体绝缘开关柜(gas insulated switchgear,GIS)设备的异常工况,提出了一种基于加权梅尔频率谱系数单类支持向量机(Mel frequency cestrum coefficient-one class support vector machine,MFCC-OCSVM)和贝叶斯优化的门控循环单元(bidirectional gate recurrent unit,BiGRU)声纹识别算法。首先,利用基于F统计量的MFCC对声纹数据进行加权特征提取,突出重要特征并减弱噪声的影响,然后利用OCSVM对加权后的特征进行异常检测并去除异常值,提高数据质量。为解决样本不平衡问题,采用合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)进行声纹样本的均衡。最后,应用基于贝叶斯优化的BiGRU模型进行声纹识别。以某气体绝缘全封闭组合电器(gas insulated switchgear,GIS)为例,采集了20类不同工况下操纵机构的声音样本,与多种经典分类模型进行对比。结果显示,所提算法取得的最高平均识别准确率达到了92.8%,相比于自适应增强、朴素贝叶斯和线性判别分析算法分别提升了30.1%、14.7%和11.5%。通过消融实验进一步评估和验证了所提算法各个流程对声纹识别的实际效果和性能影响,研究成果可为GIS设备异常工况的声纹识别提供高效技术路线。 展开更多
关键词 GIS设备 梅尔频谱倒谱系数 单类支持向量机 双向门控循环单元 声纹识别 贝叶斯优化
在线阅读 下载PDF
基于MSRC-BiGRU-SA的人体活动识别
4
作者 芦平 于增辉 华国环 《中国电子科学研究院学报》 2025年第1期25-32,共8页
针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据... 针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据的多尺度空间和时间特征并有效融合原始数据的特征信息,增强特征的表达能力和鲁棒性;其次,利用BiGRU模块充分捕捉时间序列的前后依赖关系;最后,通过SA模块增强模型对复杂活动关键特征的捕捉能力以提升分类性能。实验结果表明,在公开数据集上,该模型对复杂活动的分类准确率达到97.50%,相较于原始CNN-BiGRU模型提升了5.77%,与现有先进模型相比,具有更好的识别效果。 展开更多
关键词 复杂人体活动识别 卷积神经网络 双向门控循环单元 可穿戴传感器 深度学习
在线阅读 下载PDF
基于MSDCNN-BiGRU-SVM的滚动轴承故障诊断
5
作者 洪乐 文传博(指导) 《上海电机学院学报》 2025年第1期1-6,共6页
针对传统故障诊断方法特征提取不充分,复杂场景下诊断准确率低的问题,提出了一种结合神经网络特征提取能力与支持向量机(SVM)分类性能的故障诊断方法。首先,通过宽卷积核提取特征中的低频信息,并利用多尺度空洞卷积神经网络(MSDCNN)进... 针对传统故障诊断方法特征提取不充分,复杂场景下诊断准确率低的问题,提出了一种结合神经网络特征提取能力与支持向量机(SVM)分类性能的故障诊断方法。首先,通过宽卷积核提取特征中的低频信息,并利用多尺度空洞卷积神经网络(MSDCNN)进行自适应特征提取;其次,通过坐标注意力机制(CA)自适应确定不同通道的特征权值,并利用双向门控循环单元(Bi GRU)进一步提取振动信号中的时序特征;最后,将所提取的特征信息归一化后输入SVM分类器,并输出故障诊断结果。实验结果表明:该方法与其他智能诊断方法相比,在噪声干扰和变负载条件下有更好的故障诊断性能。 展开更多
关键词 轴承故障诊断 支持向量机 多尺度空洞卷积神经网络 坐标注意力机制 双向门控循环单元
在线阅读 下载PDF
基于BiTCN-BiGRU-AM的光伏电站输出功率预测
6
作者 袁晨曦 《上海节能》 2025年第3期422-430,共9页
随着光伏发电在全球能源结构中的比重不断增加,精确预测光伏电站输出功率成为提高电力系统稳定性和优化能源调度的关键。研究了一种新的组合深度学习模型,结合了双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)... 随着光伏发电在全球能源结构中的比重不断增加,精确预测光伏电站输出功率成为提高电力系统稳定性和优化能源调度的关键。研究了一种新的组合深度学习模型,结合了双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和注意力机制(attention mechanism,AM),从而捕捉时间序列数据的长期依赖性和复杂特征,旨在提高光伏电站输出功率预测的精确性和鲁棒性。通过横纵比较分析6种模型在4个不同季节背景,以及不同地区数据预测结果,在多个评价指标下的表现,全面评估了模型的预测准确性、稳定性和鲁棒性。该研究结果表明,该模型在预测准确性和稳定性方面表现良好,对光伏电站输出功率预测领域的发展具有积极的贡献。 展开更多
关键词 光伏电站输出功率预测 双向时间卷积网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于MSCNN-BiGRU-MLP模型的公共建筑非侵入式负荷辨识
7
作者 杨丽洁 邓振宇 +3 位作者 陈作双 黄超 江美慧 朱虹谕 《综合智慧能源》 2025年第3期23-31,共9页
在公共建筑能源管理中,负荷辨识对优化能源利用、降低能耗具有重要意义。传统负荷监测主要为侵入式,依赖硬件设备或负荷的宏观特征,难以满足现代智能建筑和智慧城市的精细化管理需求。为解决公共建筑负载多样化和不确定性带来的挑战,提... 在公共建筑能源管理中,负荷辨识对优化能源利用、降低能耗具有重要意义。传统负荷监测主要为侵入式,依赖硬件设备或负荷的宏观特征,难以满足现代智能建筑和智慧城市的精细化管理需求。为解决公共建筑负载多样化和不确定性带来的挑战,提出了一种基于多尺度卷积神经网络(MSCNN)、双向门控循环单元(BiGRU)及多层感知机(MLP)的非侵入式负荷辨识方法。模型通过融合负荷的电压-电流(V-I)轨迹特征、功率特征及谐波特征,实现对公共建筑典型插座类负荷的分类与辨识。用MSCNN提取负荷的V-I轨迹特征,捕捉设备运行期间稳定且具有“指纹”特征的信息;利用BiGRU对功率特征及谐波特征进行时间序列建模,挖掘负荷信号的动态特性;通过MLP对融合后的特征进行负荷分类。试验以多种常见公共建筑负荷为研究对象,验证了所提模型的有效性。结果表明,提出的MSCNN-BiGRU-MLP模型负荷辨识准确率达0.9171,能够准确识别负荷种类,并在特征动态变化与高频干扰的条件下保持较高的鲁棒性。 展开更多
关键词 非侵入式负荷辨识 多尺度卷积神经网络 双向门控循环单元 多层感知机 公共建筑 电压-电流(V-I)轨迹特征 能源管理
在线阅读 下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:6
8
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
在线阅读 下载PDF
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:4
9
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSSCI CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:5
10
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
融合1D-CNN与BiGRU的类不平衡流量异常检测
11
作者 陈虹 齐兵 +2 位作者 金海波 武聪 张立昂 《计算机应用》 CSCD 北大核心 2024年第8期2493-2499,共7页
网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1... 网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1D-CNN)和双向门控循环单元(BiGRU)的类不平衡流量异常检测模型。首先,针对类不平衡数据,通过使用改进的合成少数类过采样技术(SMOTE)即Borderline-SMOTE和基于高斯混合模型(GMM)的欠采样聚类技术进行平衡处理;然后,使用1D-CNN提取数据的局部特征,并利用BiGRU更好地提取数据中的时序特征;最后,在UNSW-NB15数据集对所提模型进行验证,所提模型的准确率为98.12%,误报率为1.28%。结果表明,所提模型提高了对少数攻击的识别率,检测精度高于其他经典机器学习和深度学习模型。 展开更多
关键词 流量异常检测 不平衡处理 特征选择 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测
12
作者 吐松江·卡日 雷柯松 +2 位作者 马小晶 吴现 余凯峰 《太阳能学报》 CSCD 北大核心 2024年第12期85-93,共9页
为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM... 为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM-Attention的预测模型对光伏功率进行初步预测。其次,将卷积神经网络(CNN)在非线性特征提取上的优势与双向门控循环单元(BiGRU)在防止多种特征相互干扰的优势相结合,搭建CNN-BiGRU误差预测模型对可能产生的误差进行预测,从而对初步预测结果进行修正。经过实例分析表明:与未经误差修正的预测结果进行对比,经CNN-BiGRU误差预测模型进行误差修正后在不同天气类型中均能有效提高预测精度。 展开更多
关键词 光伏功率预测 深度学习 误差修正 注意力机制 长短期神经网络 双向门控循环单元
在线阅读 下载PDF
基于SSA-TCN-BiGRU的半潜型浮式风机运动姿态预测方法
13
作者 宋磊 黄佳睿 +2 位作者 吴奇龙 王成 姜晓晨 《船舶工程》 CSCD 北大核心 2024年第12期163-172,共10页
半潜型浮式风机的运动姿态对其设备结构、动力效率、运维难度、安全性和稳定性有着显著的影响。在工程实践中,半潜型浮式风机的运动姿态预测至关重要。目前,深度学习技术的发展为这个问题带来了一些潜在的解决方案。由于半潜型浮式风机... 半潜型浮式风机的运动姿态对其设备结构、动力效率、运维难度、安全性和稳定性有着显著的影响。在工程实践中,半潜型浮式风机的运动姿态预测至关重要。目前,深度学习技术的发展为这个问题带来了一些潜在的解决方案。由于半潜型浮式风机的运动姿态具有非平稳、非线性以及难以预测的特性,因此为了提高预测的精度,基于数值模拟方法获取半潜型浮式风机在湍流风和不规则波浪下的运动,并以此为研究对象,提出了一种基于麻雀搜索算法(SSA)优化的时序卷积神经网络(TCN)与双向门控循环单元(BiGRU)组合的半潜型浮式风机运动姿态的预测方法。采用数值模拟的半潜型浮式风机运动姿态数据进行对比验证,结果表明,所提出的预测模型较于反向传播神经网络(BP)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、LSTM-ATTENTION和TCN-Bi GRU预测模型预测精度均有相应提升,在精度提升的同时,还能够保证较好的计算效率。研究成果可为海上半潜型浮式风机的运动姿态预测提供新的思路。 展开更多
关键词 浮式风机 运动姿态预测 深度学习 麻雀搜索算法 时序卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于CNN-BiGRU的高压直流输电线路故障识别 被引量:1
14
作者 赵妍 王泽通 +3 位作者 邢士标 朱建华 陈阔 张思博 《吉林电力》 2024年第1期29-34,39,共7页
针对高压直流(high voltage direct current,HVDC)输电线路故障暂态行波具有时序性和强非线性的特点,导致高过渡电阻情况下故障识别率低的问题,提出基于卷积神经网络(convolutional neural networks,CNN)和双向循环门单元(bidirectional... 针对高压直流(high voltage direct current,HVDC)输电线路故障暂态行波具有时序性和强非线性的特点,导致高过渡电阻情况下故障识别率低的问题,提出基于卷积神经网络(convolutional neural networks,CNN)和双向循环门单元(bidirectional gate recurrent unit,BiGRU)的HVDC输电线路故障识别方法。首先,采用故障后整流侧的双极暂态电流行波作为特征向量,利用CNN提取全局特征,并从中剔除噪声和不稳定成分,完成对数据的降维处理。然后,采用BiGRU来捕获CNN提取到特征的前后时间信息,进一步提取数据中的时序特征,以实现HVDC输电线路故障识别。仿真结果表明:该方法可在不同故障地点以及不同过渡电阻下对单极接地、双极短路、雷击故障、雷击干扰共四种故障实现准确识别,可靠性高,具有较强的耐受过渡电阻能力,同时具备一定的抗噪性能。 展开更多
关键词 深度学习 高压直流 卷积神经网络 双向循环门单元 故障识别
在线阅读 下载PDF
一种融合注意力机制的CNN-BiGRU磁盘故障预测方法研究
15
作者 王艳 刘亚东 +1 位作者 皮婵娟 施君豪 《大数据》 2024年第5期109-122,共14页
磁盘作为重要的存储介质,一旦出现故障很可能会导致存储数据丢失,给个人及企业带来难以估量的损失。现有磁盘故障预测模型存在不能很好地平衡磁盘数据样本、未充分利用磁盘数据的时序特性等问题。以Backblaze云存储公司公布的真实磁盘... 磁盘作为重要的存储介质,一旦出现故障很可能会导致存储数据丢失,给个人及企业带来难以估量的损失。现有磁盘故障预测模型存在不能很好地平衡磁盘数据样本、未充分利用磁盘数据的时序特性等问题。以Backblaze云存储公司公布的真实磁盘数据为研究对象,提出了一种融合注意力机制的卷积神经网络(CNN)和双向门控循环单元(BiGRU)网络的磁盘故障预测模型。在数据预处理方面,采用负采样与焦点损失函数来平衡正负样本,利用CNN进行特征提取,并结合BiGRU网络来有效地处理时序数据。通过融合注意力机制,能够让模型快速地捕捉更多关键特征信息,将筛选出的特征与数据输入模型进行训练。通过对比其他故障预测模型,本文提出的模型在精确率等4个评价指标上均有1%~7%的性能提升,为提高磁盘存储的可靠性提供了有力的支撑。 展开更多
关键词 注意力机制 磁盘故障预测 双向门控循环单元 卷积神经网络 焦点损失函数
在线阅读 下载PDF
基于CNN-BiGRU-ResNet的网络入侵检测研究
16
作者 包锋 庄泽堃 《计算机与数字工程》 2024年第2期468-472,共5页
网络入侵检测是网络安全中的一项重要工作,其主要是通过网络、系统等信息对入侵行为进行判断,它可以及时地发现网络中的攻击行为,传统的网络入侵检测方法存在准确率低并且误报率高的问题,针对上述问题,提出了一种融合双向门控循环单元(B... 网络入侵检测是网络安全中的一项重要工作,其主要是通过网络、系统等信息对入侵行为进行判断,它可以及时地发现网络中的攻击行为,传统的网络入侵检测方法存在准确率低并且误报率高的问题,针对上述问题,提出了一种融合双向门控循环单元(BiGRU)、卷积神经网络(CNN)以及残差网络(ResNet)的网络入侵检测方法,该方法通过双向门控循环单元对时间序列特征以及卷积神经网络和残差网络对局部空间特征的提取,利用softmax分类器获得最终的分类结果。实验表明,与基于GRU和ResNet等方法相比,该方法的网络入侵检测效果比较好,其准确率较高,误报率更低。 展开更多
关键词 双向门控循环单元 卷积神经网络 残差网络 网络入侵检测
在线阅读 下载PDF
基于双注意力机制的MSCN-BiGRU的滚动轴承故障诊断方法 被引量:3
17
作者 王敏 邓艾东 +2 位作者 马天霆 张宇剑 薛原 《振动与冲击》 EI CSCD 北大核心 2024年第6期84-92,103,共10页
针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated rec... 针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的故障诊断模型DAMSCN-BiGRU。首先,多尺度特征融合模块使用不同大小的卷积核,获得多种感受野,从而提取到轴承原始振动信号的多尺度特征信息,并根据重要性对其进行自适应融合,然后利用通道注意力和空间注意力组成的双注意力模块(dual attention module,DAM)对多尺度特征进行重新标定,分配注意力权重,削弱融合特征中的冗余特征;然后,增加注意力层和利用分段激活改进BiGRU进而挖掘信号的时域特征,以提高轴承故障诊断的性能;最后,通过Softmax层完成对不同故障的分类。试验结果表明,与其他智能诊断模型相比,DAMSCN-BiGRU在变工况环境下,平均诊断精度达到98.2%,在强噪声背景下仍然有着85.3%的准确率,且在不同程度的噪声强度下效果均优于其他常用模型,有利于促进滚动轴承的智能故障诊断研究和实际应用。 展开更多
关键词 滚动轴承 故障诊断 多尺度特征融合 双注意力机制 双向门控循环单元(bigru)
在线阅读 下载PDF
基于注意力机制的CNN-BIGRU短期电价预测 被引量:12
18
作者 杨超 冉启武 +1 位作者 罗德虎 豆旺 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期22-29,共8页
针对短期电价预测的复杂性和精确度较差的问题,本文提出一种基于注意力机制的卷积神经网络和双向门控循环单元网络的短期电价预测模型。该模型将历史电价数据经过数据预处理后作为输入,首先利用卷积神经网络提取历史电价序列中的特征;其... 针对短期电价预测的复杂性和精确度较差的问题,本文提出一种基于注意力机制的卷积神经网络和双向门控循环单元网络的短期电价预测模型。该模型将历史电价数据经过数据预处理后作为输入,首先利用卷积神经网络提取历史电价序列中的特征;其次,将提取的特征向量构造成时间序列输入到双向门控循环单元网络,充分挖掘特征内部的变化规律进行训练;然后,引入注意力机制来突出重要信息的影响并赋予权重,利用注意力机制对双向门控循环单元网络每个时间步的输出进行加权求和;最后,在全连接层通过激活函数计算输出最终预测值。通过实例验证了本文所提模型的准确性。 展开更多
关键词 电价预测 注意力机制 卷积神经网络 双向门控循环单元网络
在线阅读 下载PDF
基于ResNet-TSM和BiGRU网络的移动视频感知质量评价模型 被引量:1
19
作者 杜丽娜 杨硕 +2 位作者 卓力 张菁 李嘉锋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期18-26,共9页
考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失... 考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失真视频与平均意见分数之间的映射模型。首先,构建了ResNet-TSM网络结构,提取失真视频片段的深度时空特征;为了避免维度灾难,采用LargeVis算法对提取的深度特征进行降维,同时提升特征的表达与区分能力。然后,采用双向门控循环单元网络对视频的长时间依赖关系进行建模,得到各视频片段的打分,再利用时间平均池化方法将各片段分数进行聚合,得到整个视频的打分结果。在WaterlooSQoE-Ⅲ和LIVE-NFLX-Ⅱ数据集上的实验结果表明,提出的模型可以获得更高的预测精度。 展开更多
关键词 视频感知质量评价 平均意见分数 卷积神经网络 时间移位模块 双向门控循环单元 深度时空特征
在线阅读 下载PDF
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法 被引量:1
20
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部