Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) mod...Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.展开更多
An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflec...An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately.展开更多
多尺度非均匀背景为不同尺度和形状且在空间上分布不均匀的粗糙结构。本文针对多尺度非均匀粗糙背景散射特性快速计算问题,提出了基于散射中心方法的参数化表征模型。多尺度非均匀背景的散射场一般由地表大尺度表面所产生的镜反射分量...多尺度非均匀背景为不同尺度和形状且在空间上分布不均匀的粗糙结构。本文针对多尺度非均匀粗糙背景散射特性快速计算问题,提出了基于散射中心方法的参数化表征模型。多尺度非均匀背景的散射场一般由地表大尺度表面所产生的镜反射分量、大尺度表面几何不连续处所产生的绕射分量和地表小尺度粗糙面引起的漫散射分量共同组成。传统雷达目标散射中心建模采用分布型、局部型和滑动型散射中心模型(scattering center model, SCM)表征目标的反射和绕射散射;但是,传统散射中心表征形式仅能描述大尺度光滑表面、几何不连续处的散射场,无法描述小尺度粗糙面的散射效应。本文结合粗糙面的相干-非相干散射理论,在大尺度地形散射中心表征模型的基础上,利用相干模型修正小尺度粗糙面对大尺度表面散射场幅度的影响;利用双向反射分布函数(bidirectional reflectance distribution function, BRDF)建立非相干散射的参数化表征形式。对两种非均匀多尺度背景的散射特性进行参数化表征,并采用商业软件高频求解器对计算结果的精度和效率进行了校验,证明了粗糙背景散射中心参数化建模方法的可行性。展开更多
文摘Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
文摘An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately.
文摘多尺度非均匀背景为不同尺度和形状且在空间上分布不均匀的粗糙结构。本文针对多尺度非均匀粗糙背景散射特性快速计算问题,提出了基于散射中心方法的参数化表征模型。多尺度非均匀背景的散射场一般由地表大尺度表面所产生的镜反射分量、大尺度表面几何不连续处所产生的绕射分量和地表小尺度粗糙面引起的漫散射分量共同组成。传统雷达目标散射中心建模采用分布型、局部型和滑动型散射中心模型(scattering center model, SCM)表征目标的反射和绕射散射;但是,传统散射中心表征形式仅能描述大尺度光滑表面、几何不连续处的散射场,无法描述小尺度粗糙面的散射效应。本文结合粗糙面的相干-非相干散射理论,在大尺度地形散射中心表征模型的基础上,利用相干模型修正小尺度粗糙面对大尺度表面散射场幅度的影响;利用双向反射分布函数(bidirectional reflectance distribution function, BRDF)建立非相干散射的参数化表征形式。对两种非均匀多尺度背景的散射特性进行参数化表征,并采用商业软件高频求解器对计算结果的精度和效率进行了校验,证明了粗糙背景散射中心参数化建模方法的可行性。