To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are a...This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired.A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform(DWT)technique.The decision tree technique is used to select significant features out of all extracted wavelet features.C-support vector classification(C-SVC)andν-support vector classification(ν-SVC)models with different kernel functions of support vector machine(SVM)are used to study and classify the tool condition based on selected features.From the results obtained,C-SVC is the best model thanν-SVC and it can be able to give 94.5%classification accuracy for face milling of special steel alloy 42CrMo4.展开更多
Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the verac...Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the veracity of the detection algorithms become critical to the deployment of a model that accurately scores fraudulent transactions taking into account case imbalance, and the cost of identifying a case as genuine when, in fact, the case is a fraudulent transaction. In this paper, a new criterion to judge classification algorithms, which considers the cost of misclassification, is proposed, and several undersampling techniques are compared by this new criterion. At the same time, a weighted support vector machine (SVM) algorithm considering the financial cost of misclassification is introduced, proving to be more practical for credit card fraud detection than traditional methodologies. This weighted SVM uses transaction balances as weights for fraudulent transactions, and a uniformed weight for nonfraudulent transactions. The results show this strategy greatly improve performance of credit card fraud detection.展开更多
1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local m...1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local movements, international movements, etc. The data was collected from the World Health Organization. In this research, different variables have been used for analysis, for instance, new cases, new deaths, masks, schools, business, gatherings, domestic movement, international travel, new test, positive rate, test per case, new vaccination smoothed, new vaccine, total vaccination, and stringency index. Machine learning algorithms were used to predict and build the model, such as linear regression, K-nearest neighbours, decision trees, random forests, and support vector machines. Accuracy and Mean Square error (MSE) were used to test the model. A hyperparameter was also applied to find the optimum values of parameters. After computing the analysis, the result showed that the linear regression algorithm performs the best overall among the algorithms listed, with the highest testing accuracy and the lowest RMSE before and after hyper-tuning. The highest accuracy and lowest MSE were used for the best model, and for this data set, Linear regression got the highest accuracy, 0.98 and 0.97 and the lowest MSE, 4.79 and 4.04, respectively.展开更多
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ...Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.展开更多
The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of en...The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of energy consumption projections,this study investigates the combination of machine learning(ML)methods with Shapley additive explanations(SHAP)values.The study evaluates three distinct models:the first is a Linear Regressor,the second is a Support Vector Regressor,and the third is a Decision Tree Regressor,which was scaled up to a Random Forest Regressor/Additions made were the third one which was Regressor which was extended to a Random Forest Regressor.These models were deployed with the use of Shareable,Plot-interpretable Explainable Artificial Intelligence techniques,to improve trust in the AI.The findings suggest that our developedmodels are superior to the conventional models discussed in prior studies;with high Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE)values being close to perfection.In detail,the Random Forest Regressor shows the MAE of 0.001 for predicting the house prices whereas the SVR gives 0.21 of MAE and 0.24 RMSE.Such outcomes reflect the possibility of optimizing the use of the promoted advanced AI models with the use of Explainable AI for more accurate prediction of energy consumption and at the same time for the models’decision-making procedures’explanation.In addition to increasing prediction accuracy,this strategy gives stakeholders comprehensible insights,which facilitates improved decision-making and fosters confidence in AI-powered energy solutions.The outcomes show how well ML and SHAP work together to enhance prediction performance and guarantee transparency in energy usage projections.展开更多
This study aims to evaluate the effectiveness of machine learning techniques for predicting groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate Experiment satellite ...This study aims to evaluate the effectiveness of machine learning techniques for predicting groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate Experiment satellite mission.The primary objective is to develop accurate predictive models for groundwa-ter level changes by leveraging the unique capabilities of GRACE satellite data in conjunction with advanced machine learning algorithms.Three widely-used machine learning models,namely DT,SVM and RF,were employed to analyze and model the relationship between GRACE satellite data and groundwater fluctuations in South Khorasan Province,Iran.The study utilized 151 months of GRACE data spanning from 2002 to 2017,which were correlated with piezometer well data available in the study area.The JPL 2 model was selected based on its strong correlation(R=0.9368)with the observed data.The machine learn-ing models were trained and validated using a 70/30 split of the data,and their performance was evaluated 2 using various statistical metrics,including RMSE,R and NSE.The results demonstrated the suitability of machine learning approaches for modeling groundwater fluctuations using GRACE satellite data.The DT 2 model exhibited the best performance during the calibration stage,with an R value of 0.95,RMSE of 20.655,and NSE of 0.96.The SVM and RF models achieved R values of 0.79 and 0.65,and NSE values of 0.86 and 0.71,respectively.For the prediction stage,the DT model maintained its high efficiency,with an 2 RMSE of 1.48,R of 0.87,and NSE of 0.90,indicating its robustness in predicting future groundwater fluc-tuations using GRACE data.The study highlights the potential of machine learning techniques,particularly Decision Trees,in conjunction with GRACE satellite data,for accurate prediction and monitoring of groundwater fluctuations in arid and semi-arid regions.The findings demonstrate the effectiveness of the DT model in capturing the complex relationships between GRACE data and groundwater dynamics,provid-ing reliable predictions and insights for sustainable groundwater management strategies.展开更多
Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negot...Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.展开更多
In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic s...In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.展开更多
Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for ...Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model [3], the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed. The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets.展开更多
Students in South African Universities come from different socio-cultural backgrounds, countries and high schools. This suggests that these students have different experiences which impact on their levels of grasping ...Students in South African Universities come from different socio-cultural backgrounds, countries and high schools. This suggests that these students have different experiences which impact on their levels of grasping information in class as they potentially use different lenses on tuition. The current practice in Universities in contributing to the academic performance of students includes the use of tutors, the use of mobile devices for first year students, use of student assistants and the use of different feedback measures. What is problematic about the current practice is that students are quitting university in high numbers. In this study, knowledge has been drawn from data through the use of machine learning algorithms. Bayesian networks, support vector machines (SVMs) and decision trees algorithms were used individually in this work to construct predictive models for the academic performance of students. The best model was constructed using SVM and it gave a prediction of 72.87% and a prediction cost of 139. The model does predict the performance of students in advance of the year-end examinations outcome. The results suggest that South African Universities must recognize the diversity in student population and thus provide students with better support and equip them with the necessary knowledge that will enable them to tap into their full potential and thus enhance their skills.展开更多
Credit card companies must be able to identify fraudulent credit card transactions so that clients are not charged for items they did not purchase. Previously, many machine learning approaches and classifiers were use...Credit card companies must be able to identify fraudulent credit card transactions so that clients are not charged for items they did not purchase. Previously, many machine learning approaches and classifiers were used to detect fraudulent transactions. However, because fraud patterns are always changing, it is becoming increasingly vital to investigate new frauds and develop the model based on the new patterns. The purpose of this research is to create a machine learning classifier that not only detects fraud but also detects legitimate transactions. As a result, the model should have excellent accuracy, precision, recall, and f1-score. As a result, we began with a large dataset in this study and used four machine learning classifiers: Support Vector Machine (SVM), Decision Tree, Naïve Bayes, and Random Forest. The random forest classifier scored 99.96% overall accuracy with the best precision, recall, f1-score, and Matthews correlation coefficient in the experiments.展开更多
Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenar...Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.展开更多
Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible t...Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible to steal a vein pattern located inside the finger. We propose a new identification method of finger vascular patterns using a weighted local binary pattern (LBP) and support vector machine (SVM). This research is novel in the following three ways. First, holistic codes are extracted through the LBP method without using a vein detection procedure. This reduces the processing time and the complexities in detecting finger vein patterns. Second, we classify the local areas from which the LBP codes are extracted into three categories based on the SVM classifier: local areas that include a large amount (LA), a medium amount (MA), and a small amount (SA) of vein patterns. Third, different weights are assigned to the extracted LBP code according to the local area type (LA, MA, and SA) from which the LBP codes were extracted. The optimal weights are determined empirically in terms of the accuracy of the finger vein recognition. Experimental results show that our equal error rate (EER) is significantly lower compared to that without the proposed method or using a conventional method.展开更多
Posterior probability support vector machines (PPSVMs) prove robust against noises and outliers and need fewer storage support vectors (SVs). Gonen et al. (2008) extended PPSVMs to a multiclass case by both single-mac...Posterior probability support vector machines (PPSVMs) prove robust against noises and outliers and need fewer storage support vectors (SVs). Gonen et al. (2008) extended PPSVMs to a multiclass case by both single-machine and multimachine approaches. However, these extensions suffer from low classification efficiency, high computational burden, and more importantly, unclassifiable regions. To achieve higher classification efficiency and accuracy with fewer SVs, a binary tree of PPSVMs for the multiclass classification problem is proposed in this letter. Moreover, a Fisher ratio separability measure is adopted to determine the tree structure. Several experiments on handwritten recognition datasets are included to illustrate the proposed approach. Specifically, the Fisher ratio separability accelerated binary tree of PPSVMs obtains overall test accuracy, if not higher than, at least comparable to those of other multiclass algorithms, while using significantly fewer SVs and much less test time.展开更多
以压力容器气体泄漏展开研究,提出了一种融合黄金正弦的减法平均优化器(subtraction-average-based optimizer with golden sine,GSABO)、优化变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural ne...以压力容器气体泄漏展开研究,提出了一种融合黄金正弦的减法平均优化器(subtraction-average-based optimizer with golden sine,GSABO)、优化变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)与支持向量机(support vector machine,SVM)联合分类检测的方法。首先,引入了融合黄金正弦的减法平均优化器对变分模态分解的参数模态个数K和惩罚参数α进行寻优,将最小包络熵为适应度函数得到最佳的K和惩罚参数α,计算最佳IMF分量的9种时域指标构建特征向量,输入CNN-SVM联合的分类方法进行特征提取并对气体泄漏情况进行识别。经实验分析,提出的引入融合黄金正弦的减法平均优化器优化后的VMD方法能够有效地自适应获取最优参数组,然后对压力容器气体泄漏声波信号进行特征提取,选取最优的特征组合输入CNNSVM联合分类检测,得到泄漏与否判别准确率高达99.16%,有助于对后续研究进一步开展。展开更多
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.
文摘This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired.A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform(DWT)technique.The decision tree technique is used to select significant features out of all extracted wavelet features.C-support vector classification(C-SVC)andν-support vector classification(ν-SVC)models with different kernel functions of support vector machine(SVM)are used to study and classify the tool condition based on selected features.From the results obtained,C-SVC is the best model thanν-SVC and it can be able to give 94.5%classification accuracy for face milling of special steel alloy 42CrMo4.
文摘Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the veracity of the detection algorithms become critical to the deployment of a model that accurately scores fraudulent transactions taking into account case imbalance, and the cost of identifying a case as genuine when, in fact, the case is a fraudulent transaction. In this paper, a new criterion to judge classification algorithms, which considers the cost of misclassification, is proposed, and several undersampling techniques are compared by this new criterion. At the same time, a weighted support vector machine (SVM) algorithm considering the financial cost of misclassification is introduced, proving to be more practical for credit card fraud detection than traditional methodologies. This weighted SVM uses transaction balances as weights for fraudulent transactions, and a uniformed weight for nonfraudulent transactions. The results show this strategy greatly improve performance of credit card fraud detection.
文摘1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local movements, international movements, etc. The data was collected from the World Health Organization. In this research, different variables have been used for analysis, for instance, new cases, new deaths, masks, schools, business, gatherings, domestic movement, international travel, new test, positive rate, test per case, new vaccination smoothed, new vaccine, total vaccination, and stringency index. Machine learning algorithms were used to predict and build the model, such as linear regression, K-nearest neighbours, decision trees, random forests, and support vector machines. Accuracy and Mean Square error (MSE) were used to test the model. A hyperparameter was also applied to find the optimum values of parameters. After computing the analysis, the result showed that the linear regression algorithm performs the best overall among the algorithms listed, with the highest testing accuracy and the lowest RMSE before and after hyper-tuning. The highest accuracy and lowest MSE were used for the best model, and for this data set, Linear regression got the highest accuracy, 0.98 and 0.97 and the lowest MSE, 4.79 and 4.04, respectively.
文摘Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.
文摘The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of energy consumption projections,this study investigates the combination of machine learning(ML)methods with Shapley additive explanations(SHAP)values.The study evaluates three distinct models:the first is a Linear Regressor,the second is a Support Vector Regressor,and the third is a Decision Tree Regressor,which was scaled up to a Random Forest Regressor/Additions made were the third one which was Regressor which was extended to a Random Forest Regressor.These models were deployed with the use of Shareable,Plot-interpretable Explainable Artificial Intelligence techniques,to improve trust in the AI.The findings suggest that our developedmodels are superior to the conventional models discussed in prior studies;with high Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE)values being close to perfection.In detail,the Random Forest Regressor shows the MAE of 0.001 for predicting the house prices whereas the SVR gives 0.21 of MAE and 0.24 RMSE.Such outcomes reflect the possibility of optimizing the use of the promoted advanced AI models with the use of Explainable AI for more accurate prediction of energy consumption and at the same time for the models’decision-making procedures’explanation.In addition to increasing prediction accuracy,this strategy gives stakeholders comprehensible insights,which facilitates improved decision-making and fosters confidence in AI-powered energy solutions.The outcomes show how well ML and SHAP work together to enhance prediction performance and guarantee transparency in energy usage projections.
文摘This study aims to evaluate the effectiveness of machine learning techniques for predicting groundwater fluctuations in arid and semi-arid regions using data from the Gravity Recovery and Climate Experiment satellite mission.The primary objective is to develop accurate predictive models for groundwa-ter level changes by leveraging the unique capabilities of GRACE satellite data in conjunction with advanced machine learning algorithms.Three widely-used machine learning models,namely DT,SVM and RF,were employed to analyze and model the relationship between GRACE satellite data and groundwater fluctuations in South Khorasan Province,Iran.The study utilized 151 months of GRACE data spanning from 2002 to 2017,which were correlated with piezometer well data available in the study area.The JPL 2 model was selected based on its strong correlation(R=0.9368)with the observed data.The machine learn-ing models were trained and validated using a 70/30 split of the data,and their performance was evaluated 2 using various statistical metrics,including RMSE,R and NSE.The results demonstrated the suitability of machine learning approaches for modeling groundwater fluctuations using GRACE satellite data.The DT 2 model exhibited the best performance during the calibration stage,with an R value of 0.95,RMSE of 20.655,and NSE of 0.96.The SVM and RF models achieved R values of 0.79 and 0.65,and NSE values of 0.86 and 0.71,respectively.For the prediction stage,the DT model maintained its high efficiency,with an 2 RMSE of 1.48,R of 0.87,and NSE of 0.90,indicating its robustness in predicting future groundwater fluc-tuations using GRACE data.The study highlights the potential of machine learning techniques,particularly Decision Trees,in conjunction with GRACE satellite data,for accurate prediction and monitoring of groundwater fluctuations in arid and semi-arid regions.The findings demonstrate the effectiveness of the DT model in capturing the complex relationships between GRACE data and groundwater dynamics,provid-ing reliable predictions and insights for sustainable groundwater management strategies.
文摘Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.
基金This work is supported by the National Natural Science Foundation of China(No.U1736118)the Natural Science Foundation of Guangdong(No.2016A030313350)+3 种基金the Special Funds for Science and Technology Development of Guangdong(No.2016KZ010103)the Key Project of Scientific Research Plan of Guangzhou(No.201804020068)the Fundamental Research Funds for the Central Universities(No.16lgjc83 and No.17lgjc45)the Science and Technology Planning Project of Guangdong Province(Grant No.2017A040405051).
文摘In recent years,binary image steganography has developed so rapidly that the research of binary image steganalysis becomes more important for information security.In most state-of-the-art binary image steganographic schemes,they always find out the flippable pixels to minimize the embedding distortions.For this reason,the stego images generated by the previous schemes maintain visual quality and it is hard for steganalyzer to capture the embedding trace in spacial domain.However,the distortion maps can be calculated for cover and stego images and the difference between them is significant.In this paper,a novel binary image steganalytic scheme is proposed,which is based on distortion level co-occurrence matrix.The proposed scheme first generates the corresponding distortion maps for cover and stego images.Then the co-occurrence matrix is constructed on the distortion level maps to represent the features of cover and stego images.Finally,support vector machine,based on the gaussian kernel,is used to classify the features.Compared with the prior steganalytic methods,experimental results demonstrate that the proposed scheme can effectively detect stego images.
基金TheNationalHighTechnologyResearchandDevelopmentProgramofChina (No .86 3 5 11 930 0 0 9)
文摘Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model [3], the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed. The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets.
文摘Students in South African Universities come from different socio-cultural backgrounds, countries and high schools. This suggests that these students have different experiences which impact on their levels of grasping information in class as they potentially use different lenses on tuition. The current practice in Universities in contributing to the academic performance of students includes the use of tutors, the use of mobile devices for first year students, use of student assistants and the use of different feedback measures. What is problematic about the current practice is that students are quitting university in high numbers. In this study, knowledge has been drawn from data through the use of machine learning algorithms. Bayesian networks, support vector machines (SVMs) and decision trees algorithms were used individually in this work to construct predictive models for the academic performance of students. The best model was constructed using SVM and it gave a prediction of 72.87% and a prediction cost of 139. The model does predict the performance of students in advance of the year-end examinations outcome. The results suggest that South African Universities must recognize the diversity in student population and thus provide students with better support and equip them with the necessary knowledge that will enable them to tap into their full potential and thus enhance their skills.
文摘Credit card companies must be able to identify fraudulent credit card transactions so that clients are not charged for items they did not purchase. Previously, many machine learning approaches and classifiers were used to detect fraudulent transactions. However, because fraud patterns are always changing, it is becoming increasingly vital to investigate new frauds and develop the model based on the new patterns. The purpose of this research is to create a machine learning classifier that not only detects fraud but also detects legitimate transactions. As a result, the model should have excellent accuracy, precision, recall, and f1-score. As a result, we began with a large dataset in this study and used four machine learning classifiers: Support Vector Machine (SVM), Decision Tree, Naïve Bayes, and Random Forest. The random forest classifier scored 99.96% overall accuracy with the best precision, recall, f1-score, and Matthews correlation coefficient in the experiments.
文摘Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.
基金Project(No.R112002105070020(2010))supported by the National Research Foundation of Korea(NRF) through the Biometrics Engi-neering Research Center(BERC)at Yonsei University
文摘Finger vein recognition is a biometric technique which identifies individuals using their unique finger vein patterns. It is reported to have a high accuracy and rapid processing speed. In addition, it is impossible to steal a vein pattern located inside the finger. We propose a new identification method of finger vascular patterns using a weighted local binary pattern (LBP) and support vector machine (SVM). This research is novel in the following three ways. First, holistic codes are extracted through the LBP method without using a vein detection procedure. This reduces the processing time and the complexities in detecting finger vein patterns. Second, we classify the local areas from which the LBP codes are extracted into three categories based on the SVM classifier: local areas that include a large amount (LA), a medium amount (MA), and a small amount (SA) of vein patterns. Third, different weights are assigned to the extracted LBP code according to the local area type (LA, MA, and SA) from which the LBP codes were extracted. The optimal weights are determined empirically in terms of the accuracy of the finger vein recognition. Experimental results show that our equal error rate (EER) is significantly lower compared to that without the proposed method or using a conventional method.
基金Project (Nos. 60874104 and 70971020) supported by the National Natural Science Foundation of China
文摘Posterior probability support vector machines (PPSVMs) prove robust against noises and outliers and need fewer storage support vectors (SVs). Gonen et al. (2008) extended PPSVMs to a multiclass case by both single-machine and multimachine approaches. However, these extensions suffer from low classification efficiency, high computational burden, and more importantly, unclassifiable regions. To achieve higher classification efficiency and accuracy with fewer SVs, a binary tree of PPSVMs for the multiclass classification problem is proposed in this letter. Moreover, a Fisher ratio separability measure is adopted to determine the tree structure. Several experiments on handwritten recognition datasets are included to illustrate the proposed approach. Specifically, the Fisher ratio separability accelerated binary tree of PPSVMs obtains overall test accuracy, if not higher than, at least comparable to those of other multiclass algorithms, while using significantly fewer SVs and much less test time.