This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several ret...This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several retailers on a multi-period planning horizon. A formulation of the problem based on vehicle indices is proposed in the form of a mixed integer linear program (MILP). The mathematical model of the problem is solved using a branch and cut (B&C) algorithm. The results of the tests are compared to the results of a branch and price (B&P) algorithm from the literature on 2E-IRP with a classical distribution policy. The results of the tests show that the B&C algorithm solves 197 out of 200 instances (98.5%). The comparison of the B&C and B&P results shows that 185 best solutions are obtained with the B&C algorithm on 197 instances (93.9%). Overall, the B&C algorithm achieves cost reductions ranging from 0.26% to 41.44% compared to the classic 2E-IRP results solved with the B&P algorithm, with an overall average reduction of 18.08%.展开更多
A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measu...A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measure cell height across a living monolayer without knowing the refractive index of cells. For the interference pattern, because the phases are all wrapped between - π to π, it is necessary to get the real phase through phase unwrapping,a method to restore the wrapped phase data of the object by using numerical calculations. Three representative algorithms are selected to unwrap the interference pattern of ceils: branch-cut method, quality-guided method and network method. Although each of them can restore the phase, their performances are obviously different. We compare these methods and find that branch-cut method needs the smallest execution time and can obtain good unwrapped patterns when noises are not serious.展开更多
文摘This study presents a two-echelon inventory routing problem (2E-IRP) with an end-of-tour replenishment (ETR) policy whose distribution network consists of a supplier, several distribution centers (DCs) and several retailers on a multi-period planning horizon. A formulation of the problem based on vehicle indices is proposed in the form of a mixed integer linear program (MILP). The mathematical model of the problem is solved using a branch and cut (B&C) algorithm. The results of the tests are compared to the results of a branch and price (B&P) algorithm from the literature on 2E-IRP with a classical distribution policy. The results of the tests show that the B&C algorithm solves 197 out of 200 instances (98.5%). The comparison of the B&C and B&P results shows that 185 best solutions are obtained with the B&C algorithm on 197 instances (93.9%). Overall, the B&C algorithm achieves cost reductions ranging from 0.26% to 41.44% compared to the classic 2E-IRP results solved with the B&P algorithm, with an overall average reduction of 18.08%.
基金Supported by the International Technology Cooperation Projects of BIT(GZ 20110451)
文摘A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measure cell height across a living monolayer without knowing the refractive index of cells. For the interference pattern, because the phases are all wrapped between - π to π, it is necessary to get the real phase through phase unwrapping,a method to restore the wrapped phase data of the object by using numerical calculations. Three representative algorithms are selected to unwrap the interference pattern of ceils: branch-cut method, quality-guided method and network method. Although each of them can restore the phase, their performances are obviously different. We compare these methods and find that branch-cut method needs the smallest execution time and can obtain good unwrapped patterns when noises are not serious.