The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Rese...The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Research shows that this type of robot improves the efficiency and quality of exterior wall construction.Its intelligent design enhances operation accuracy and safety,reduces costs and risks,and strengthens application ability in complex environments,showing broad application prospects and symbolizing the development trend of intelligence and automation in the industry.In the future,it is necessary to strengthen its intelligence and adaptive ability further,explore multi-function design,promote automation technology,and ensure construction safety and economic benefits.展开更多
This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart,...This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.展开更多
The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural ...The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural photovoltaic integration on the photovoltaic energy balance with natural ventilation or with forced cooling systems.The developed methodology is applied for five photovoltaic module technologies(m⁃Si,p⁃Si,a⁃Si,CdTe,and CIGS)on four characteristic locations(Athens,Davos,Stockholm,and Würzburg).To this end,a photovoltaic module thermal radiation parameter,PVj,is introduced in the characterization of the PV module technology,rendering the correlations suitable for building⁃integrated photovoltaic(BIPV)applications,with natural ventilation or with forced cooling systems.The results show that PVj has a significant influence on the energy balances,according to the architectural photovoltaic integration and climatic conditions.Keywords:Photovoltaic cooling;BIPV;Photovoltaic;Ventilation;Photovoltaic integration level in building【OA】(2)Graph⁃Based methodology for Multi⁃Scale generation of energy analysis models from IFC,by Asier Mediavilla,Peru Elguezabal,Natalia Lasarte,Article 112795 Abstract:Process digitalisation and automation is unstoppable in all industries,including construction.However,its widespread adoption,even for non⁃experts,demands easy⁃to⁃use tools that reduce technical requirements.BIM to BEM(Building Energy Models)workflows are a clear example,where ad⁃hoc prepared models are needed.This paper describes a methodology,based on graph techniques,to automate it by highly reducing the input BIM requirements found in similar approaches,being applicable to almost any IFC.This is especially relevant in retrofitting,where reality capture tools(e.g.,3D laser scanning,object recognition in drawings)are prone to create geometry clashes and other inconsistencies,posing higher challenges for automation.Another innovation presented is its multi⁃scale nature,efficiently addressing the surroundings impact in the energy model.The application to selected test cases has been successful and further tests are ongoing,considering a higher variety of BIM models in relation to tools and techniques used and model sizes.展开更多
At the present stage of urban construction, a large number of super high-rise building projects have been completed, and the quality of urban super high-rise building projects has been paid more and more attention. Wi...At the present stage of urban construction, a large number of super high-rise building projects have been completed, and the quality of urban super high-rise building projects has been paid more and more attention. With the development of information technology, building electrical automation engineering has made great progress. The application of electrical automation in super high-rise building engineering can promote the improvement of users' life quality experience, which has important practical significance. Based on this, this paper analyzes the electrical automation equipment installation project management of super high-rise building, in order to provide theoretical support for improving the construction quality of super high-rise building.展开更多
Electrical engineering is a priority subject in the field of modern science and technology, and also a subject of special concern. It is an indispensable part of the development of modern high technology. To some exte...Electrical engineering is a priority subject in the field of modern science and technology, and also a subject of special concern. It is an indispensable part of the development of modern high technology. To some extent, the application degree of electrical engineering is the standard of each country's scientific and technological development level. The application of automation and intelligent technologies at the local level will continue to improve people's living standards and economies. The combination of electrical engineering with automation and intelligent technology, as well as its intelligent and flexible application in the power and construction industries, can play an extremely important role in the gradual development of the building electrical industry. In-depth understanding and analysis of the application of electrical engineering and automation intelligent technology is crucial for combining electrical engineering theory and practice with automation intelligent technology, improving the actual completion efficiency of construction electrical engineering and promoting industrial development.展开更多
Electrical automation equipment is an important part of the construction industry. However, in the installation and debugging of electrical automation equipment, there are many technical problems and problems to be co...Electrical automation equipment is an important part of the construction industry. However, in the installation and debugging of electrical automation equipment, there are many technical problems and problems to be considered. In order to further improve the engineering management level of electrical automation equipment in super-high buildings, it is necessary to strengthen the installation and debugging of equipment to ensure the smooth progress of the project. This paper discusses the engineering management of electrical automation equipment in super-high buildings in China, in order to provide reference for the safety and quality of super-high buildings in China.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many B...Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS protocol.In this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and Z-Wave.Holistic studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave Plus.LonWorks and ZigBee do not have security extensions.We point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of it.We seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.展开更多
Industrialized buildings,characterized by off-site manufacturing and on-site installation,offer notable improvements in efficiency,cost-effectiveness,and material use.This transition from traditional construction meth...Industrialized buildings,characterized by off-site manufacturing and on-site installation,offer notable improvements in efficiency,cost-effectiveness,and material use.This transition from traditional construction methods not only accelerates building processes but also enhances working efficiencies globally.Despite its widespread adoption,the performance of industrialized building manufacturing(IBM)can still be optimized,particularly in enhancing time efficiency and reducing costs.This paper explores the integration of Artificial Intelligence(AI)and robotics at IBM to improve efficiency,cost-effectiveness,and material use in off-site assembly.Through a narrative literature review,this study systematically categorizes AI-based Robots(AIRs)applications into four critical stages—Cognition,Communication,Control,and Collab-oration and Coordination,and then investigates their appli-cation in the factory assembly process for industrialized buildings,which is structured into distinct stages:compo-nent preparation,sub-assembly,main assembly,finishing tasks,and quality control.Each stage,from positioning components to the integration of larger modules and subsequent quality inspection,often involves robots or human-robot collaboration to enhance precision and effi-ciency.By examining research from 2014 to 2024,the review highlights the significant improvements AI-based robots have introduced to the construction sector,identifies existing challenges,and outlines future research directions.This comprehensive analysis aims to establish more effi-cient,precise,and tailored construction processes,paving the way for advanced IBM.展开更多
基金Design and Research of Intelligent Construction Device for the“Water-in-Sand”Process of High-Rise Building Exterior Wall(Project No.2022KQNCX189)。
文摘The spraying robot for building exterior walls is an innovative technology in the field of modern construction.This paper discusses its design structure,application cases,technical benefits,and industrial impacts.Research shows that this type of robot improves the efficiency and quality of exterior wall construction.Its intelligent design enhances operation accuracy and safety,reduces costs and risks,and strengthens application ability in complex environments,showing broad application prospects and symbolizing the development trend of intelligence and automation in the industry.In the future,it is necessary to strengthen its intelligence and adaptive ability further,explore multi-function design,promote automation technology,and ensure construction safety and economic benefits.
文摘This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.
文摘The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural photovoltaic integration on the photovoltaic energy balance with natural ventilation or with forced cooling systems.The developed methodology is applied for five photovoltaic module technologies(m⁃Si,p⁃Si,a⁃Si,CdTe,and CIGS)on four characteristic locations(Athens,Davos,Stockholm,and Würzburg).To this end,a photovoltaic module thermal radiation parameter,PVj,is introduced in the characterization of the PV module technology,rendering the correlations suitable for building⁃integrated photovoltaic(BIPV)applications,with natural ventilation or with forced cooling systems.The results show that PVj has a significant influence on the energy balances,according to the architectural photovoltaic integration and climatic conditions.Keywords:Photovoltaic cooling;BIPV;Photovoltaic;Ventilation;Photovoltaic integration level in building【OA】(2)Graph⁃Based methodology for Multi⁃Scale generation of energy analysis models from IFC,by Asier Mediavilla,Peru Elguezabal,Natalia Lasarte,Article 112795 Abstract:Process digitalisation and automation is unstoppable in all industries,including construction.However,its widespread adoption,even for non⁃experts,demands easy⁃to⁃use tools that reduce technical requirements.BIM to BEM(Building Energy Models)workflows are a clear example,where ad⁃hoc prepared models are needed.This paper describes a methodology,based on graph techniques,to automate it by highly reducing the input BIM requirements found in similar approaches,being applicable to almost any IFC.This is especially relevant in retrofitting,where reality capture tools(e.g.,3D laser scanning,object recognition in drawings)are prone to create geometry clashes and other inconsistencies,posing higher challenges for automation.Another innovation presented is its multi⁃scale nature,efficiently addressing the surroundings impact in the energy model.The application to selected test cases has been successful and further tests are ongoing,considering a higher variety of BIM models in relation to tools and techniques used and model sizes.
文摘At the present stage of urban construction, a large number of super high-rise building projects have been completed, and the quality of urban super high-rise building projects has been paid more and more attention. With the development of information technology, building electrical automation engineering has made great progress. The application of electrical automation in super high-rise building engineering can promote the improvement of users' life quality experience, which has important practical significance. Based on this, this paper analyzes the electrical automation equipment installation project management of super high-rise building, in order to provide theoretical support for improving the construction quality of super high-rise building.
文摘Electrical engineering is a priority subject in the field of modern science and technology, and also a subject of special concern. It is an indispensable part of the development of modern high technology. To some extent, the application degree of electrical engineering is the standard of each country's scientific and technological development level. The application of automation and intelligent technologies at the local level will continue to improve people's living standards and economies. The combination of electrical engineering with automation and intelligent technology, as well as its intelligent and flexible application in the power and construction industries, can play an extremely important role in the gradual development of the building electrical industry. In-depth understanding and analysis of the application of electrical engineering and automation intelligent technology is crucial for combining electrical engineering theory and practice with automation intelligent technology, improving the actual completion efficiency of construction electrical engineering and promoting industrial development.
文摘Electrical automation equipment is an important part of the construction industry. However, in the installation and debugging of electrical automation equipment, there are many technical problems and problems to be considered. In order to further improve the engineering management level of electrical automation equipment in super-high buildings, it is necessary to strengthen the installation and debugging of equipment to ensure the smooth progress of the project. This paper discusses the engineering management of electrical automation equipment in super-high buildings in China, in order to provide reference for the safety and quality of super-high buildings in China.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
基金supported in part by US National Science Foundation awards(2325451,1931871,and 1915780)US Department of Energy Award(DE-EE0009152)Anhui University of Technology,China(QD202368-DT2300002594).
文摘Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS protocol.In this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and Z-Wave.Holistic studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave Plus.LonWorks and ZigBee do not have security extensions.We point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of it.We seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
文摘Industrialized buildings,characterized by off-site manufacturing and on-site installation,offer notable improvements in efficiency,cost-effectiveness,and material use.This transition from traditional construction methods not only accelerates building processes but also enhances working efficiencies globally.Despite its widespread adoption,the performance of industrialized building manufacturing(IBM)can still be optimized,particularly in enhancing time efficiency and reducing costs.This paper explores the integration of Artificial Intelligence(AI)and robotics at IBM to improve efficiency,cost-effectiveness,and material use in off-site assembly.Through a narrative literature review,this study systematically categorizes AI-based Robots(AIRs)applications into four critical stages—Cognition,Communication,Control,and Collab-oration and Coordination,and then investigates their appli-cation in the factory assembly process for industrialized buildings,which is structured into distinct stages:compo-nent preparation,sub-assembly,main assembly,finishing tasks,and quality control.Each stage,from positioning components to the integration of larger modules and subsequent quality inspection,often involves robots or human-robot collaboration to enhance precision and effi-ciency.By examining research from 2014 to 2024,the review highlights the significant improvements AI-based robots have introduced to the construction sector,identifies existing challenges,and outlines future research directions.This comprehensive analysis aims to establish more effi-cient,precise,and tailored construction processes,paving the way for advanced IBM.