期刊文献+
共找到359篇文章
< 1 2 18 >
每页显示 20 50 100
A New Approach to Predict Financial Failure: Classification and Regression Trees (CART) 被引量:1
1
作者 Ayse Guel Yllgoer UEmit Dogrul Guelhan Orekici Temel 《Journal of Modern Accounting and Auditing》 2011年第4期329-339,共11页
The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more ... The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure. 展开更多
关键词 business failure financial distress PREDICTION classification and regression trees cart
在线阅读 下载PDF
基于成长型CART的综合能源系统安全调度方法研究
2
作者 李鑫 庞超 王智爽 《传感器与微系统》 北大核心 2025年第2期53-56,共4页
随着天然气网络与电网耦合性的逐步提高,电力和天然气综合能源系统的运行更易受到多重因素的影响。提出了一种基于成长型分类与回归树(CART)的电力和天然气综合能源系统安全调度方法。首先,构建了基于成长型分类与回归树的安全域划分模... 随着天然气网络与电网耦合性的逐步提高,电力和天然气综合能源系统的运行更易受到多重因素的影响。提出了一种基于成长型分类与回归树(CART)的电力和天然气综合能源系统安全调度方法。首先,构建了基于成长型分类与回归树的安全域划分模型,根据CART确定安全域和可控变量边界;其次,提出了电-气综合能源系统的安全调度策略,构建了基于安全约束的功率流和天然气流优化模型,CART规则用于描述安全域的约束,对最优发电量和产气量进行预防性调整;最后,本文以15节点天然气网络和IEEE118节点电网测试系统为例,验证了所提出的安全调度方法在恢复安全运行方面的效果。 展开更多
关键词 综合能源系统 安全调度 成长型分类与回归树 安全域
在线阅读 下载PDF
Groundwater level prediction of landslide based on classification and regression tree 被引量:2
3
作者 Yannan Zhao Yuan Li +1 位作者 Lifen Zhang Qiuliang Wang 《Geodesy and Geodynamics》 2016年第5期348-355,共8页
According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the chang... According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree(CART) model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15%respectively. To compare the support vector machine(SVM) model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides. 展开更多
关键词 LandSLIDE Groundwater level PREDICTION classification and regression tree Three Gorges Reservoir area
在线阅读 下载PDF
Predicting the Underlying Structure for Phylogenetic Trees Using Neural Networks and Logistic Regression
4
作者 Hassan W. Kayondo Samuel Mwalili 《Open Journal of Statistics》 2020年第2期239-251,共13页
Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ ... Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ from those needed when a population is not structured. In this paper, we compared two supervised machine learning techniques, that is artificial neural network (ANN) and logistic regression models for prediction of an underlying structure for phylogenetic trees. We carried out parameter tuning for the models to identify optimal models. We then performed 10-fold cross-validation on the optimal models for both logistic regression?and ANN. We also performed a non-supervised technique called clustering to identify the number of clusters that could be identified from simulated phylogenetic trees. The trees were from?both structured?and non-structured populations. Clustering and prediction using classification techniques were?done using tree statistics such as Colless, Sackin and cophenetic indices, among others. Results from 10-fold cross-validation revealed that both logistic regression and ANN models had comparable results, with both models having average accuracy rates of over 0.75. Most of the clustering indices used resulted in 2 or 3 as the optimal number of clusters. 展开更多
关键词 Artificial NEURAL Networks LOGISTIC regression PHYLOGENETIC TREE TREE STATISTICS classification Clustering
在线阅读 下载PDF
基于CART的高速公路差异化收费政策实施研究
5
作者 黄海博 马晓晖 +3 位作者 张蓓 苏媛 韩宝睿 李根 《黑龙江工程学院学报》 2025年第2期44-51,共8页
为解决高速公路货车差异化收费政策实施条件不明确的问题,构建差异化收费背景下货车出行路径决策的分类与回归树模型,针对决策树结果设置“if-then”规则提取选择高速的货车司机特征,结合甘肃省高速公路货车司机出行实例给出一种直观的... 为解决高速公路货车差异化收费政策实施条件不明确的问题,构建差异化收费背景下货车出行路径决策的分类与回归树模型,针对决策树结果设置“if-then”规则提取选择高速的货车司机特征,结合甘肃省高速公路货车司机出行实例给出一种直观的判断方法。结果表明:在模型性能方面,CART模型在准确率、预测精度、召回率、F 1分数、AUC等评估指标上均优于逻辑回归模型;在模型解释方面,CART模型给出货车司机出行决策的风险因素重要性排名;设置的“if-then”规则提取了6类倾向选择高速出行的货车司机特征,并根据这6类特征给出差异化收费政策实施的判断条件。研究结果有助于高速公路管理人员直观定位受差异化收费政策影响敏感的货车司机人群,明确实施差异化收费政策的条件。 展开更多
关键词 交通政策 货车出行路径决策 分类与回归树 机器学习模型 “if-then”规则
在线阅读 下载PDF
列线图与CART决策树模型对膝关节置换术后急性疼痛风险预测中的效能比较
6
作者 马超 韩影 程旻桦 《新疆医科大学学报》 2025年第2期195-202,共8页
目的分别构建预测膝关节置换术(TKA)后急性疼痛(APP)风险的列线图与分类与回归树(CART)决策树模型,并比较两种模型在对TKA后APP风险预测中的预测效能。方法以274例膝关节骨性关节炎(KOA)患者为研究对象,均于2018年3月至2024年4月在本院... 目的分别构建预测膝关节置换术(TKA)后急性疼痛(APP)风险的列线图与分类与回归树(CART)决策树模型,并比较两种模型在对TKA后APP风险预测中的预测效能。方法以274例膝关节骨性关节炎(KOA)患者为研究对象,均于2018年3月至2024年4月在本院进行TKA治疗,根据术后是否发生APP将患者分为APP组(n=98)和非APP组(n=176),对两组患者进行单因素分析。根据单因素分析结果进行Logistic回归分析TKA后APP的危险因素,根据危险因素绘制列线图模型;根据单因素分析结果进行CART决策树模型建立。绘制两种模型的受试者工作特征(ROC)曲线并对两种模型的预测效能进行DeLong检验。结果单因素分析结果显示,两组患者在年龄、体质指数(BMI)、糖尿病、西安大略和麦克马斯特大学骨关节炎指数(WOMAC)、术前疼痛灾难化量表(PCS)评分、术前视觉模拟评分(VAS)、止血带使用时间、神经阻滞、术后使用镇痛泵方面比较差异具有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,BMI≥25 kg/m^(2)、糖尿病、PCS评分≥27分、VAS评分≥5分、术后未使用镇痛泵为TKA后APP的独立危险因素(P<0.05)。基于多因素Logistic回归结果采用R软件绘制列线图模型。将单因素分析中差异具有统计学意义的相关因素纳入CART决策树模型,最终模型筛选出5个特征,包括BMI≥25 kg/m^(2)、糖尿病、WOMAC≥48分、术前使用神经阻滞、未使用术后镇痛泵。绘制两种模型的ROC曲线,结果显示列线图模型和CART决策树模型的AUC分别为0.858和0.911,灵敏度分别为81.88%和86.34%,特异度分别为82.91%和87.62%,阳性预测值分别为75.43%和80.69%,阴性预测值分别为82.94%和89.27%,预测准确率分别为83.31%和89.75%。两种模型AUC值相比差异具有统计学意义(Z=9.864,P<0.001)。结论两种模型均对TKA后APP风险具有较好的预测效能,CART决策树预测效能优于列线图模型。 展开更多
关键词 膝关节置换术 术后急性疼痛 预测效能 列线图模型 cart决策树模型
在线阅读 下载PDF
基于CART决策树的分布式数据离群点检测算法 被引量:1
7
作者 朱华 乔勇进 董国钢 《现代电子技术》 北大核心 2024年第16期157-162,共6页
在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环... 在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环境下高效地发现离群点。因此,提出一种基于CART决策树的分布式数据离群点检测算法。在构建CART决策树时,使用类间中心距离作为分裂准则,根据分离类别对训练数据进行分类,从而确定数据的类型。在上述基础上,考虑到离群点的分布模式与其周围数据对象不同,使用空间局部偏离因子(SLDF)对空间内各个数据对象之间的离群程度展开度量,同时在高维空间内展开网格划分,引入SLDF算法检测剩余离群点集,最终实现分布式数据离群点检测。实验结果表明,所提方法的离散点检测错误率在0.010以内,可以更加精准地实现分布式数据离群点检测,具有良好的检测性能。 展开更多
关键词 cart决策树 分布式数据 离群点检测 类间距离 数据分类 空间局部偏离因子
在线阅读 下载PDF
Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage:A Case Study from Beijing Municipality,China 被引量:6
8
作者 HU Deyong CHEN Shanshan +1 位作者 QIAO Kun CAO Shisong 《Chinese Geographical Science》 SCIE CSCD 2017年第4期614-625,共12页
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val... The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation. 展开更多
关键词 impervious surface impervious surface percentage classification and regression tree(cart sub-pixel sub-pixel impervious surface percentage(SPIS) time series
在线阅读 下载PDF
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
9
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram SIGNAL time DOMAIN FEATURES frequency DOMAIN FEATURES classification and regression tree CLASSIFIER particle swarm optimization algorithm.
在线阅读 下载PDF
A retinal blood vessel extraction algorithm based on CART decision tree and improved AdaBoost
10
作者 DIWU Peng-peng HU Ya-qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第1期61-68,共8页
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t... This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm. 展开更多
关键词 classification and regression tree (cart) improved adptive boosting (AdaBoost) retinal blood vessel local binary pattern (LBP) texture
在线阅读 下载PDF
基于CART回归树模型的变电站施工安全事故分析与预测 被引量:1
11
作者 田浩 卢博 +3 位作者 杨彦东 卜剑冲 邓建新 李东昌 《湘潭大学学报(自然科学版)》 CAS 2024年第1期101-108,共8页
在当前的变电站施工过程中,主要通过数据包络分析过程预测安全事故,忽略了表征信息中的不确定性,导致预测结果的选取受试者工作特征曲线下面积(AUC)值较低.针对这一问题,本研究应用分类回归树(CART)模型,设计了一种新的变电站施工安全... 在当前的变电站施工过程中,主要通过数据包络分析过程预测安全事故,忽略了表征信息中的不确定性,导致预测结果的选取受试者工作特征曲线下面积(AUC)值较低.针对这一问题,本研究应用分类回归树(CART)模型,设计了一种新的变电站施工安全事故分析与预测方法.首先,利用固定型、移动型采集技术相结合的方式,采集变电站施工现场数据,并通过主成分分析算法进行筛选处理.然后,深入分析变电站施工安全事故发生过程,通过基于概率分布的可分性判据,提取施工安全事故前兆特征.最后,利用CART模型构建施工安全事故根节点,再使用支持向量机(SVM)回归算法建立叶节点,形成可用于施工安全事故预测的最优决策树.通过迭代训练多个串联的CART模型实现梯度提升,应用该模型即可得到准确的事故预测结果.实验结果表明:该预测方法灵敏度更高,能够预测出更多的安全事故,并且该预测方法的AUC值高达0.91,具有更高的预测精度. 展开更多
关键词 分类回归树 变电站施工 安全事故 预测 特征分类 支持向量机
在线阅读 下载PDF
Machine Learning-Driven Classification for Enhanced Rule Proposal Framework
12
作者 B.Gomathi R.Manimegalai +1 位作者 Srivatsan Santhanam Atreya Biswas 《Computer Systems Science & Engineering》 2024年第6期1749-1765,共17页
In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been auto... In enterprise operations,maintaining manual rules for enterprise processes can be expensive,time-consuming,and dependent on specialized domain knowledge in that enterprise domain.Recently,rule-generation has been automated in enterprises,particularly through Machine Learning,to streamline routine tasks.Typically,these machine models are black boxes where the reasons for the decisions are not always transparent,and the end users need to verify the model proposals as a part of the user acceptance testing to trust it.In such scenarios,rules excel over Machine Learning models as the end-users can verify the rules and have more trust.In many scenarios,the truth label changes frequently thus,it becomes difficult for the Machine Learning model to learn till a considerable amount of data has been accumulated,but with rules,the truth can be adapted.This paper presents a novel framework for generating human-understandable rules using the Classification and Regression Tree(CART)decision tree method,which ensures both optimization and user trust in automated decision-making processes.The framework generates comprehensible rules in the form of if condition and then predicts class even in domains where noise is present.The proposed system transforms enterprise operations by automating the production of human-readable rules from structured data,resulting in increased efficiency and transparency.Removing the need for human rule construction saves time and money while guaranteeing that users can readily check and trust the automatic judgments of the system.The remarkable performance metrics of the framework,which achieve 99.85%accuracy and 96.30%precision,further support its efficiency in translating complex data into comprehensible rules,eventually empowering users and enhancing organizational decision-making processes. 展开更多
关键词 classification and regression tree process automation rules engine model interpretability explainability model trust
在线阅读 下载PDF
基于CART决策树的110 kV供电区域分布式光伏承载能力测算模型
13
作者 代守乐 李萍 《分布式能源》 2024年第3期82-88,共7页
分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源... 分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源输出功率、区域分布式电源发电量占比、局部分布式电源线损增量等数据为基础,利用CART决策树建立110kV供电区域分布式光伏承载能力测算模型,并使用改进鲸鱼优化算法求解测算结果。经实验测试发现,该模型对分布式光伏承载能力的测算精准度较高,可有效测算不同实验区域在不同季节时的分布式光伏承载能力,具有较高的应用价值。 展开更多
关键词 分类与回归树(cart) 110kV供电区域 分布式光伏 承载能力
在线阅读 下载PDF
基于决策树法构建老年肝细胞癌患者TACE术后急性中重度腹痛的风险预测模型
14
作者 卢慧 张姬 李玮玮 《中华保健医学杂志》 2025年第1期89-93,共5页
目的基于决策树法构建老年肝细胞癌(HCC)患者经动脉化疗栓塞(TACE)术后急性中重度腹痛的风险预测模型,为预防患者TACE术后急性中重度腹痛提供参考。方法回顾性收集2020年10月~2023年9月期间在南通市第三人民医院介入科接受TACE治疗的36... 目的基于决策树法构建老年肝细胞癌(HCC)患者经动脉化疗栓塞(TACE)术后急性中重度腹痛的风险预测模型,为预防患者TACE术后急性中重度腹痛提供参考。方法回顾性收集2020年10月~2023年9月期间在南通市第三人民医院介入科接受TACE治疗的362例老年HCC患者的临床资料。根据术后48 h内是否发生急性中重度腹痛,将患者分为腹痛组(n=123)和无腹痛组(n=239)。使用决策分类回归树(CRT)法构建急性中重度腹痛的预测模型,并通过受试者工作特征(ROC)曲线分析比较预测效果。结果单因素分析结果显示,两组患者在TACE手术史、肿瘤距肝包膜距离、肿瘤最大直径、肿瘤数目、血管侵犯比例、TACE术式、TACE术后腹痛病史、碘油用量和使用无水乙醇比例方面差异具有统计学意义(χ^(2)=18.772、24.295、32.255、19.708、35.844、32.496、8.719、107.524、62.734,P<0.05)。CRT模型构建结果显示,碘油用量、是否使用无水乙醇、血管侵犯、TACE手术史、TACE术式及肿瘤数目均为术后急性中重度腹痛的影响因素(P<0.05)。CRT模型的曲线下面积(AUC)为0.895,95%CI=0.858~0.932,灵敏度为0.772,特异度为0.912。结论老年HCC患者术后发生急性中重度腹痛的主要影响因素包括碘油用量、是否使用无水乙醇、血管侵犯情况、TACE手术史、TACE术式及肿瘤数目。基于上述因素构建的CRT模型具有良好的预测效果。 展开更多
关键词 决策分类回归树 老年肝细胞癌患者 经动脉化疗栓塞 急性中重度腹痛
在线阅读 下载PDF
基于CART集成学习的城市不透水层百分比遥感估算 被引量:21
15
作者 廖明生 江利明 +1 位作者 林珲 杨立民 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第12期1099-1102,1106,共5页
利用Landsat ETM+遥感数据,提出了一种基于CART集成学习的ISP遥感亚像元估算方法,将Boosting重采样技术引入CART分析中,用于提高ISP估算的精度。实验结果表明,该方法的ISP估算性能优于传统的单一CART学习算法,从ETM+影像中估算的ISP值... 利用Landsat ETM+遥感数据,提出了一种基于CART集成学习的ISP遥感亚像元估算方法,将Boosting重采样技术引入CART分析中,用于提高ISP估算的精度。实验结果表明,该方法的ISP估算性能优于传统的单一CART学习算法,从ETM+影像中估算的ISP值与真实值之间的相关系数达到0.91,平均偏差为11.16%。 展开更多
关键词 城市不透水层 遥感影像 分类与回归树 Boosting技术 集成学习
在线阅读 下载PDF
基于影像多种特征的CART决策树分类方法及其应用 被引量:60
16
作者 陈云 戴锦芳 李俊杰 《地理与地理信息科学》 CSCD 北大核心 2008年第2期33-36,共4页
以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过... 以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过计算确定决策树的节点规则,提取影像中主要地物信息。将分类结果与单纯依靠光谱特征的监督分类法结果相比较,表明基于影像多种特征的CART决策树分类方法分类精度较高,尤其较好地提取了围网养殖区和建设用地。 展开更多
关键词 纹理特征 光谱特征 cart 决策树
在线阅读 下载PDF
高光谱图像植被类型的CART决策树分类 被引量:18
17
作者 董连英 邢立新 +3 位作者 潘军 王静 李丽丽 焦健楠 《吉林大学学报(信息科学版)》 CAS 2013年第1期83-89,共7页
为提高植被分类的精度,在利用高光谱图像提取植被信息时需要考虑训练样本和地形等其他因素的影响。以长白山为研究背景,基于CART(Classification And Regression Tree)算法构建决策树模型,对高光谱图像进行植被分类。由于混合像元的影响... 为提高植被分类的精度,在利用高光谱图像提取植被信息时需要考虑训练样本和地形等其他因素的影响。以长白山为研究背景,基于CART(Classification And Regression Tree)算法构建决策树模型,对高光谱图像进行植被分类。由于混合像元的影响,以采用PPI(Pixel Purity Index)提取的纯净像元作为训练样本,提取植被指数、纹理和地形等分类特征变量。基于这些变量构建CART决策树对植被分类,并将结果与最大似然法分类结果进行比较。结果表明,CART决策树分类法可实现光谱、纹理和地形特征的有效组合,有较好的分类效果。 展开更多
关键词 高光谱 植被分类 端元提取 cart决策树
在线阅读 下载PDF
基于变化检测-CART决策树模式自动识别沙漠化信息 被引量:12
18
作者 黄晓君 颉耀文 +3 位作者 卫娇娇 付苗 吕利利 张玲玲 《灾害学》 CSCD 2017年第1期36-42,共7页
目前沙漠化遥感监测存在目视解译的局限性、数据源的约束性、遥感信息利用率低等问题。基于此,以民勤盆地为试验区,首先采用图像差值、最大值合成及二维最大类间方差等方法,检测1994年、2014年两期Landsat图像的变化像元,然后利用分类... 目前沙漠化遥感监测存在目视解译的局限性、数据源的约束性、遥感信息利用率低等问题。基于此,以民勤盆地为试验区,首先采用图像差值、最大值合成及二维最大类间方差等方法,检测1994年、2014年两期Landsat图像的变化像元,然后利用分类与回归树(CART)算法构建决策树,自动提取了2014年沙地信息,最后将变化检测结果与沙地信息进行空间叠置分析,并实现了沙漠化信息自动识别模式。研究表明,变化检测-CART决策树模式精度为89.43%~93.00%,在95%置信水平上其置信区间介于85.90%~98.00%,显然其精度具有较高可信度;该模式不仅能够充分利用丰富遥感信息而且可排除多余信息的干扰。可见,变化检测-CART决策树模式是识别沙漠化信息的有效方法之一,将对沙漠化防治工程具有重要应用价值。 展开更多
关键词 沙漠化 分类与回归树(cart) 决策树 变化检测 自动识别
在线阅读 下载PDF
基于分类回归树(CART)方法的统计解析模型的应用与研究 被引量:31
19
作者 张立彬 张其前 +1 位作者 胥芳 杜奖胜 《浙江工业大学学报》 CAS 2002年第4期315-318,共4页
分类回归树是基于统计理论的非参数的识别技术 ,它具有非常强大的统计解析功能 ,对输入数据和预测数据的要求可以是不完整的 ,或者是复杂的浮点数运算。而且 ,数据处理后的结果所包含的规则明白易懂。因此 ,分类回归树已成为对特征数据... 分类回归树是基于统计理论的非参数的识别技术 ,它具有非常强大的统计解析功能 ,对输入数据和预测数据的要求可以是不完整的 ,或者是复杂的浮点数运算。而且 ,数据处理后的结果所包含的规则明白易懂。因此 ,分类回归树已成为对特征数据进行建立统计解析模型的一个很好的方法。本文首先介绍了一种构建分类回归树的算法 ,并对其剪枝策略进行了简单的探讨 ,最后用统计解析软件S PLUS对一个应用实例进行了分析 。 展开更多
关键词 cart 分类回归树 二叉树 S-PLUS 统计解析模型 剪枝策略 数据处理 建模方法
在线阅读 下载PDF
基于二项logistic回归模型与CART树的煤层底板突水预测 被引量:14
20
作者 刘再斌 靳德武 刘其声 《煤田地质与勘探》 CAS CSCD 北大核心 2009年第1期56-61,共6页
为定量评价煤层底板突水信息对突水过程的影响程度,获得煤层底板突水规则,采用二项logistic回归与CART树相结合的方法进行煤层底板突水预测。在煤层底板突水信息分析的基础上,建立了包含全因素的煤层底板突水预测概率模型,基于向后逐步... 为定量评价煤层底板突水信息对突水过程的影响程度,获得煤层底板突水规则,采用二项logistic回归与CART树相结合的方法进行煤层底板突水预测。在煤层底板突水信息分析的基础上,建立了包含全因素的煤层底板突水预测概率模型,基于向后逐步回归分析方法获得了包含6项主要突水信息的精简煤层底板突水预测概率模型。通过CART树算法获得了煤层底板突水规则,分类测试结果表明,所获得的突水规则分类准确率达到91.67%。 展开更多
关键词 二项logisitic回归 突水预测 突水信息 cart
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部