期刊文献+
共找到108,685篇文章
< 1 2 250 >
每页显示 20 50 100
基于CRNN-CTC的智能判题器设计
1
作者 黄巧洁 刘思思 +1 位作者 黎颖 刘伟俭 《自动化技术与应用》 2025年第4期61-65,共5页
为了有效提升线上辅助教学效率,建立微信小程序判题系统实现随时随地智能判题。基于卷积循环神经网络(convolutional recurrent neural network,CRNN)和联结主义时序分类器(connectionist temporal classification,CTC),设计部署于云服... 为了有效提升线上辅助教学效率,建立微信小程序判题系统实现随时随地智能判题。基于卷积循环神经网络(convolutional recurrent neural network,CRNN)和联结主义时序分类器(connectionist temporal classification,CTC),设计部署于云服务器的智能判题器,通过调用微信小程序,实现待识别图片判题功能。实验结果表明,该系统能实现十以内加减法的自动判题,准确率达99.5%以上。采用云技术的自动判题系统突破了传统主观题判题模式,能更好地调动学生的学习积极性,也能大大减少教师的重复判题工作量,实现了教与学的双赢发展。 展开更多
关键词 CRNN-ctc 智能判题器 微信小程序 二值化
在线阅读 下载PDF
基于改进ABC与Attention-CTC的语音识别技术研究
2
作者 张竞 《自动化与仪器仪表》 2025年第2期14-17,23,共5页
现阶段的智能化科学技术对于人类听觉系统的分析理解还很弱,无法将其应用于英语语音的识别当中。因此,研究针对智能化英语语音识别遭遇的困难与挑战,将改进后的人工蜂群算法、注意力机制与联接主义时序分类算法相融合,创新性地提出了一... 现阶段的智能化科学技术对于人类听觉系统的分析理解还很弱,无法将其应用于英语语音的识别当中。因此,研究针对智能化英语语音识别遭遇的困难与挑战,将改进后的人工蜂群算法、注意力机制与联接主义时序分类算法相融合,创新性地提出了一种基于改进人工蜂群算法与联接主义时序分类算法的语音识别模型。实验结果表明,研究所提模型的英语语音识别准确率达到了96.23%,单词错误率和字符错误率分别仅为4.67%与1.98%。且研究提出的新型英语语言识别模型P值最高为95.46%,R值最高为92.29%,F1值最高为93.84%,平均检测时间最短仅为2.54 s。由此可知,研究所提新型语音识别模型具有不错的语音特征提取与识别能力,能为智能化英语语音识别提供一定程度的理论支持。 展开更多
关键词 ABC 注意力机制 ctc 英语 语音识别
原文传递
5G-R承载CTCS-3级列控数据传输研究
3
作者 秦树增 赵志鹏 +1 位作者 杨胜 韩佳汛 《铁道标准设计》 北大核心 2025年第2期176-182,190,共8页
CTCS-3级列控系统是保障列车在350 km时速下安全运行的关键系统,是铁路无线通信系统承载的关键性核心业务,对于车地间数据通信具有非常高的可靠性要求。5G-R技术的高可靠、低时延、更精细的服务保障机制及增强的高速适应性符合CTCS-3级... CTCS-3级列控系统是保障列车在350 km时速下安全运行的关键系统,是铁路无线通信系统承载的关键性核心业务,对于车地间数据通信具有非常高的可靠性要求。5G-R技术的高可靠、低时延、更精细的服务保障机制及增强的高速适应性符合CTCS-3级列控系统的业务需求。对CTCS-3级列控系统中应用5G-R的必要性和5G-R系统承载CSCS-3级列控数据传输面临的相关问题进行分析,探讨我国未来列控系统通过升级改造适配5G-R系统的技术路线和实现路径,介绍了5G-R模式下CTCS-3级列控车地数据传输机制和5G-R/GSM-R双模模块在基于5G-R的CTCS-3级列控系统中的应用。通过在5G-R专网实验室环境下的列控业务功能和性能试验,对比GSM-R中CSD数据传输的性能指标,探讨5G-R承载列控数据的适用性,研究CTCS-3级列控的服务质量保障机制原理、列控业务专用QoS特性和列控专用QoS流的建立流程,并通过试验验证了5G-R系统的QoS保障机制可以在网络资源紧张的情况下优先保证CTCS-3级列控数据业务的稳定可靠传输。 展开更多
关键词 ctcS-3级列控系统 5G-R 数据传输 性能试验 服务质量
在线阅读 下载PDF
基于5E-CTC模式发展批判性思维的教学设计——化学平衡的移动 被引量:1
4
作者 张四方 牛汝南 +2 位作者 卢淑娟 祝海鸿 张梦怡 《化学教育(中英文)》 北大核心 2025年第5期51-60,共10页
批判性思维是一种高阶思维品质,它是为决定相信什么或做什么而进行的合理的、反省性的思维,是培养创新性人才的重要前提。以现有中学化学教学中批判性思维教育为基础,在5E教学模式基础上,构建并发展了批判性思维的5E-CTC循环教学模式。... 批判性思维是一种高阶思维品质,它是为决定相信什么或做什么而进行的合理的、反省性的思维,是培养创新性人才的重要前提。以现有中学化学教学中批判性思维教育为基础,在5E教学模式基础上,构建并发展了批判性思维的5E-CTC循环教学模式。以“化学平衡的移动”为例,详细阐述“创设问题情境,引发学生思考”“设计探究实验,自主解释归纳”“进行迭代验证,完善已有认知”“联系生活实际,迁移应用新知”“引导反思评价,促进思维提升”等5个教学环节,通过循环迭代的活动设计,引导学生进行实验探究,发展批判性思维。 展开更多
关键词 批判性思维 5E-ctc教学模式 化学平衡的移动 教学设计
原文传递
CTC系统站场界面实景显示和操作自动化测试平台研究
5
作者 刘语馨 许伟 +3 位作者 段晓磊 郎越 张鑫 王政谚 《铁道运输与经济》 北大核心 2025年第3期207-215,共9页
为解决CTC系统站场界面实景显示和操作测试过程中,人工测试方式工作量繁重且主观性强易出现错漏的问题,采用集中控制与分布执行结合的机制,设计CTC系统站场界面实景显示和操作自动化测试平台;在对联锁对象状态自动识别的基础上,实现联锁... 为解决CTC系统站场界面实景显示和操作测试过程中,人工测试方式工作量繁重且主观性强易出现错漏的问题,采用集中控制与分布执行结合的机制,设计CTC系统站场界面实景显示和操作自动化测试平台;在对联锁对象状态自动识别的基础上,实现联锁与CTC执行结果的联合比对;构建基于模态输入的联锁测试条件自动模拟方式,将人工对外部系统的操作转变为自动化操作,并支撑测试环境自启动与复位功能的实现;通过业务流程抽象的固态模型、场景优先级匹配准则与经验库映射关系匹配准则自动生成测试序列;在自动测试模式的基础上增设人工测试模式,以提高平台的泛化能力。平台支持多制式联锁与站型,可实现24小时托管以提高测试效率,在保证测试准确性的同时具有较高的自动化覆盖率,并有效避免平台异常退出后既有测试数据的丢失。 展开更多
关键词 ctc系统 自动测试 界面实景显示和操作 联锁系统 测试管理终端
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
6
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
基于遮蔽多头注意力的CTC-Conformer中文语音识别模型
7
作者 黄天圆 王超 《智能计算机与应用》 2025年第2期162-167,共6页
Conformer模型是语言处理任务中广泛应用的模型之一,其结合了Transformer模型和卷积神经网络的特点,既能捕捉到局部和全局的序列特征又能更好地理解输入数据的结构和上下文信息。然而,现有Conformer模型中的音频和文本之间对齐关系存在... Conformer模型是语言处理任务中广泛应用的模型之一,其结合了Transformer模型和卷积神经网络的特点,既能捕捉到局部和全局的序列特征又能更好地理解输入数据的结构和上下文信息。然而,现有Conformer模型中的音频和文本之间对齐关系存在不确定性,同时模型采用的多头注意力还会将未来时间步输入信息泄漏到当前时间步。采用连接时序分类(Connectionist Temporal Classification, CTC)机制进行辅助训练,不仅可以提高基于Macaron-Net结构的Conformer模型鲁棒性,还可以解决音频和文本不对齐问题。在解码器部分,应用遮蔽多头自注意力机制以确保在t时刻模型无法查看未来时间步的输入信息,从而保证模型仅利用已生成的标记进行预测。实验结果表明,基于遮蔽多头注意力的CTC-Conformer模型相对于Conformer模型的字错率与损失率均有所下降,损失值最低达到了3.24。 展开更多
关键词 CONFORMER ctc 遮蔽多头注意力 语言处理
在线阅读 下载PDF
Multi-Step Clustering of Smart Meters Time Series:Application to Demand Flexibility Characterization of SME Customers
8
作者 Santiago Bañales Raquel Dormido Natividad Duro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期869-907,共39页
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the... Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions. 展开更多
关键词 Electric load clustering load profiling smart meters machine learning data mining demand flexibility demand response
在线阅读 下载PDF
Domain Delineation Using Geological Data, Variogram Analysis, and Clustering Algorithms
9
作者 Farzaneh Khorram Amin Hossein Morshedy 《Journal of Geoscience and Environment Protection》 2025年第1期31-47,共17页
Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study i... Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling. 展开更多
关键词 Domaining Hard and Fuzzy clustering Spatial Anisotropy Kahang Deposit
在线阅读 下载PDF
Multi-Order Neighborhood Fusion Based Multi-View Deep Subspace Clustering
10
作者 Kai Zhou Yanan Bai +1 位作者 Yongli Hu Boyue Wang 《Computers, Materials & Continua》 2025年第3期3873-3890,共18页
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s... Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024). 展开更多
关键词 Multi-view subspace clustering subspace clustering deep clustering multi-order graph structure
在线阅读 下载PDF
LayerCFL:an efcient federated learning with layer-wised clustering
11
作者 Jie Yuan Rui Qian +3 位作者 Tingting Yuan Mingliang Sun Jirui Li Xiaoyong Li 《Cybersecurity》 2025年第1期72-85,共14页
Federated Learning(FL)sufers from the Non-IID problem in practice,which poses a challenge for efcient and accurate model training.To address this challenge,prior research has introduced clustered FL(CFL),which involve... Federated Learning(FL)sufers from the Non-IID problem in practice,which poses a challenge for efcient and accurate model training.To address this challenge,prior research has introduced clustered FL(CFL),which involves clustering clients and training them separately.Despite its potential benefts,CFL can be computationally and communicationally expensive when the data distribution is unknown beforehand.This is because CFL involves the entire neural networks of involved clients in computing the clusters during training,which can become increasingly timeconsuming with large-sized models.To tackle this issue,this paper proposes an efcient CFL approach called LayerCFL that employs a Layer-wised clustering technique.In LayerCFL,clients are clustered based on a limited number of layers of neural networks that are pre-selected using statistical and experimental methods.Our experimental results demonstrate the efectiveness of LayerCFL in mitigating the impact of Non-IID data,improving the accuracy of clustering,and enhancing computational efciency. 展开更多
关键词 Federated learning Clustered federated learning Non-IID Layer-wised clustering
原文传递
Characterization and clustering of rock discontinuity sets:A review
12
作者 Changle Pu Jiewei Zhan +1 位作者 Wen Zhang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1240-1262,共23页
The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under... The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets. 展开更多
关键词 Discontinuity clustering clustering algorithms Discontinuity characterization Orientation analysis Rock mass
在线阅读 下载PDF
CBTC系统与CTCS-2系统贯通运行的ATO技术方案
13
作者 崔亦博 孟军 +2 位作者 陈宁宁 廖志斌 王芃 《中国铁路》 北大核心 2025年第1期76-84,共9页
为了更好地实现城轨交通CBTC系统与城际铁路CTCS-2系统贯通运行,研究贯通运行的列车自动运行(ATO)技术方案,设计兼容双制式信号系统的ATO软件结构、制式转换逻辑和速度衔接方案。方案通过CBTC制式ATO软件与CTCS-2制式ATO软件前后台运行... 为了更好地实现城轨交通CBTC系统与城际铁路CTCS-2系统贯通运行,研究贯通运行的列车自动运行(ATO)技术方案,设计兼容双制式信号系统的ATO软件结构、制式转换逻辑和速度衔接方案。方案通过CBTC制式ATO软件与CTCS-2制式ATO软件前后台运行的方式,实现列车以AM模式在CBTC制式与CTCS-2制式间的无缝转换。在2种制式信号系统线路间设置制式转换区,列车在制式转换区内实现不停车转换。研究制定实验室仿真测试方案,搭建测试环境并执行制式转换功能测试,在测试中列车实现了CBTC制式ATO与CTCS-2制式ATO的双向平稳切换。测试数据分析结果表明,ATO在制式转换时的速度抖动在正常范围内,速度曲线平滑,证明了该技术方案的可行性。下一步将结合现场工程线路的技术条件,优化系统参数与软件结构,为系统功能的完善定型和后续工程化应用提供支撑。 展开更多
关键词 城轨交通 城际铁路 贯通运行 CBTC ctcS-2 ATO 制式转换 仿真测试
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
14
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization Algorithm(GJOA) Improved Whale Optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Calibrated models for effective clustering:Discriminating operation schedules in occupied buildings
15
作者 Karla Guerrero Ramírez Cristina Nuevo-Gallardo +2 位作者 Jesús Miguel Santamaría Ulecia Beatriz Montalbán Pozas Carlos Fernández Bandera 《Building Simulation》 2025年第1期161-181,共21页
European directives advocate for end-users to be aware of their energy consumption.However,individual energy monitoring tools,such as energy meters or cost allocators,are not always affordable or technically feasible ... European directives advocate for end-users to be aware of their energy consumption.However,individual energy monitoring tools,such as energy meters or cost allocators,are not always affordable or technically feasible to install.Therefore,the development of virtual tools that enable the study of energy consumption in existing buildings is necessary.Virtual sensors,particularly based on white-box models,offer the opportunity to recreate these behaviours.When calibrated with measured data,white-box models,which incorporate detailed building physics,become increasingly valuable for designing energy-efficient buildings.This research explores a novel approach to identifying building’s load period directly from energy data generated by these calibrated models.The volume of data generated by white-box models can be overwhelming for visual analysis,but the hypothesis here is that analysing this data through clustering techniques can reveal patterns related to occupant behaviour and operational schedules.By feeding indoor temperature data into the calibrated model and analysing the resulting energy outputs,the research proposes a method to identify the heating,ventilation and air conditioning(HVAC)system operation schedule,free oscillation periods and non-recurrent events.Validation is achieved by comparing the identified periods with actual measured data.This methodology enables the development of a virtual sensor for cost allocation,which minimises the need for physical sensor deployment while complying with European Union directives.The research not only demonstrates high accuracy but also the potential to outperform measured schedule.This suggests the ability of the method to identify missing sensor data or other factors affecting temperature curves,enabling fault detection and diagnostics(FDD).Consequently,this opens doors for setting optimised operation schedules that balance energy efficiency with occupant comfort. 展开更多
关键词 calibrated models WHITE-BOX CLUSTER SCHEDULE free oscillation LOAD
原文传递
Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection
16
作者 Weitao Ha Sheng Gang +2 位作者 Yahya D.Navaei Abubakar S.Gezawa Yaser A.Nanehkaran 《Computers, Materials & Continua》 2025年第5期3025-3057,共33页
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users... Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%. 展开更多
关键词 Music recommender system order clustering deep learning
在线阅读 下载PDF
基于gSOAP的车站CTC数据一键换装系统的研究
17
作者 罗忠辉 马虬 王圣根 《铁路通信信号工程技术》 2025年第4期39-44,50,共7页
铁路调度集中系统(CTC)产品的施工改造具有施工影响面大和天窗点时间短的特点,车站CTC数据的换装主要是通过人工方式借助第三方工具进行远程拷贝,传输效率低。针对上述情况,研制一种基于gSOAP(开源C/C++库)的车站CTC数据一键换装系统,... 铁路调度集中系统(CTC)产品的施工改造具有施工影响面大和天窗点时间短的特点,车站CTC数据的换装主要是通过人工方式借助第三方工具进行远程拷贝,传输效率低。针对上述情况,研制一种基于gSOAP(开源C/C++库)的车站CTC数据一键换装系统,详细介绍系统的架构设计、功能组成和实现方法。通过实验测试,验证结果满足设计需求,尤其是在多个车站CTC数据换装时更能体现出其优势,从技术层面保证数据的完整性和安全性,大幅度地提高现场施工质量和效率。 展开更多
关键词 铁路调度集中系统 换装 GSOAP 完整性 智慧铁路
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
18
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 clustering data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering
19
作者 Ruirui Wang Yaodong Ni +1 位作者 Lingli Zhang Boyang Gao 《Deep Underground Science and Engineering》 2025年第1期55-71,共17页
To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine lea... To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine learning method for predicting rock mass parameters.An elaborate data set on field rock mass is collected,which also matches field TBM tunneling.Meanwhile,target stratum samples are divided into several clusters by fuzzy C-means clustering,and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data.Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster.The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project.The average percentage error of uniaxial compressive strength and joint frequency(Jf)of the 30 testing samples predicted by the pure back propagation(BP)neural network is 13.62%and 12.38%,while that predicted by the BP neural network combined with fuzzy C-means is 7.66%and6.40%,respectively.In addition,by combining fuzzy C-means clustering,the prediction accuracies of support vector regression and random forest are also improved to different degrees,which demonstrates that fuzzy C-means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability.Accordingly,the proposed method is valuable for predicting rock mass parameters during TBM tunneling. 展开更多
关键词 fuzzy C-means clustering machine learning rock mass parameter tunnel boring machine
在线阅读 下载PDF
CBTC与CTCS2+ATO信号制式线路列车贯通运行仿真测试
20
作者 唐德璋 李作洁 +2 位作者 孔嘉铖 陈倩佳 董志通 《铁道通信信号》 2025年第2期77-85,共9页
随着全国铁路和城市现代化建设的推进,实现干线铁路、城际铁路、市域铁路、城市轨道交通“四网融合”成为轨道交通发展的新需求。针对CBTC与CTCS2+ATO不同信号制式线路贯通运行需求,研究CBTC和CTCS2+ATO双制式车载配置列车贯通运行方案... 随着全国铁路和城市现代化建设的推进,实现干线铁路、城际铁路、市域铁路、城市轨道交通“四网融合”成为轨道交通发展的新需求。针对CBTC与CTCS2+ATO不同信号制式线路贯通运行需求,研究CBTC和CTCS2+ATO双制式车载配置列车贯通运行方案。阐述地面设备和车载设备构成,以及CBTC与CTCS2+ATO制式转换的贯通运行场景;设计CBTC与CTCS2+ATO不同制式线路贯通运行室内仿真方案,对仿真线路各车站和区间进行特殊配置;分别描述区间制式转换和站内制式转换贯通运行转换场景,并对转换过程中的异常事件提出防护措施。该室内仿真方案已在实验室实现,验证了CBTC和CTCS2+ATO双制式车载配置列车在CBTC线路与CTCS2+ATO线路上的贯通运行功能,可为后续设备测试提供可靠的技术支撑。 展开更多
关键词 基于通信的列车控制系统 中国列车运行控制系统 四网融合 贯通运行 信号系统
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部