期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
1
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 Hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
Research on multiple-strategy improved coati optimization algorithm for engineering applications
2
作者 GAO Yaqiong WU Jin +1 位作者 SU Zhengdong LI Chaoxing 《High Technology Letters》 EI CAS 2024年第4期405-414,共10页
In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and ... In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms. 展开更多
关键词 coati optimization algorithm(coa) chaotic map multi-strategy
在线阅读 下载PDF
基于ICOA算法的泵控液压马达PID调速系统
3
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《机床与液压》 北大核心 2025年第5期101-106,共6页
为了提高泵控液压马达PID调速系统的速度和精度,通过建立数学模型和Simulink仿真系统,确定了变量泵控定量液压马达系统以液压泵摆角为输入的调速控制回路的传递函数;针对传统PID调速系统在速度和精度方面的局限性,引入一种改进的长鼻浣... 为了提高泵控液压马达PID调速系统的速度和精度,通过建立数学模型和Simulink仿真系统,确定了变量泵控定量液压马达系统以液压泵摆角为输入的调速控制回路的传递函数;针对传统PID调速系统在速度和精度方面的局限性,引入一种改进的长鼻浣熊优化算法(ICOA),该算法结合了反向学习差分进化和萤火虫扰动策略以提高系统性能。在CEC2022函数的性能测试中,相比长鼻浣熊优化算法等5种算法,ICOA算法表现优异,它在单峰、多峰、复合且多模态的函数上均表现出较好的收敛速度、寻优精度和鲁棒性。最后,通过仿真验证,ICOA算法在泵控液压马达PID调速性能优化方面具有更好的效果,能够更有效地使系统响应达到期望的状态。 展开更多
关键词 泵控液压马达 PID调速系统 改进浣熊优化算法 控制性能
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究
4
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
基于COA-CNN模型的综采工作面煤与瓦斯突出灾害预测研究
5
作者 许爱国 《陕西煤炭》 2025年第2期62-66,共5页
随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线... 随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线图(Boxplot)与多重插补法(MI)进行数据清洗,结合相关系数(Correlation)筛选影响因素,建立基于Boxplot-MI-C的煤与瓦斯突出预测指标体系。然后运用深度学习中的卷积神经网络(CNN)搭建模型框架,结合鸬鹚搜索算法(COA)优化模型超参数,建立基于COA-CNN的煤与瓦斯突出预测模型。最后,建立支持向量机(SVM)、COA-SVM、人工神经网络(ANN)、COA-ANN、CNN模型进行对比验证,其中,COA-CNN模型预测结果的准确率最高,拥有更优的鲁棒性与泛化能力,可以为煤与瓦斯突出灾害的预测与防控提供更好的决策参考。 展开更多
关键词 煤与瓦斯突出 数据清洗 指标体系 coa优化算法 CNN预测模型
在线阅读 下载PDF
A new optimization algorithm based on chaos 被引量:19
6
作者 LU Hui-juan ZHANG Huo-ming MA Long-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期539-542,共4页
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ... In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones. 展开更多
关键词 Chaos optimization algorithm coa Carrier wave two times Multi-variables optimization Carrier wave triple frequency
在线阅读 下载PDF
基于漏磁场和ICOA-ResNet的变压器绕组早期故障诊断 被引量:11
7
作者 刘建锋 李志远 周亚茹 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期99-110,共12页
针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选... 针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选取合适的故障特征以及光纤漏磁场传感器安装位置。然后,通过改进长鼻浣熊优化算法(improved coati optimization algorithm,ICOA)寻找残差神经网络(ResNet)的最优超参数,以此参数构建ICOA-ResNet模型,将所得故障特征量输入模型进行故障诊断。最后,通过仿真数据和动模实验验证所提出的变压器绕组早期故障诊断模型的可行性。所提模型与支持向量机等4种模型相比,在绕组早期故障诊断上有更高的准确率,表明所提方法对变压器绕组变形、匝间短路故障诊断的有效性。 展开更多
关键词 变压器早期故障诊断 绕组变形 漏磁场 长鼻浣熊优化算法 残差神经网络 超参数优化
在线阅读 下载PDF
基于COA-GRU的低成本气体传感器数据修正方法
8
作者 李炳伟 叶树霞 +3 位作者 齐亮 张永韡 冯锦 陈宇霆 《仪表技术与传感器》 CSCD 北大核心 2024年第3期120-126,共7页
针对低成本气体传感器在受到温度、湿度、压力、气体交叉干扰等影响时检测精度低的问题,提出了一种长鼻浣熊-门控循环单元神经网络(COA-GRU)的修正模型,用于提高传感器检测精度。首先,根据低成本传感器的非线性特性构建了GRU修正模型;其... 针对低成本气体传感器在受到温度、湿度、压力、气体交叉干扰等影响时检测精度低的问题,提出了一种长鼻浣熊-门控循环单元神经网络(COA-GRU)的修正模型,用于提高传感器检测精度。首先,根据低成本传感器的非线性特性构建了GRU修正模型;其次,利用COA算法解决修正模型的多局部极值以及参数组合寻优问题;最后,利用低成本传感器组以及H200D气体检测装置的实测数据对该方法进行了仿真实验。结果表明,使用COA-GRU修正模型后,SO_(2)、CO、NO_(2)、CO_(2)传感器的平均绝对误差分别降低了72.0%、28.4%、29.6%、13.5%,能够有效提高低成本传感器的检测精度。 展开更多
关键词 气体传感器 长鼻浣熊门控循环单元 修正模型 检测精度
在线阅读 下载PDF
KPCA-ICOA-BP模型的液体火箭发动机故障诊断
9
作者 孙传鑫 薛薇 许亮 《航天控制》 CSCD 2024年第6期78-84,共7页
为了提高液体火箭发动机工作的可靠性,针对液体火箭发动机故障诊断问题,提出一种基于核主成分分析(KPCA)和ICOA-BP算法的故障诊断模型。通过KPCA算法对测量参数进行特征提取和降维,保证在特征充足的情况下降低数据的复杂性,减少计算成本... 为了提高液体火箭发动机工作的可靠性,针对液体火箭发动机故障诊断问题,提出一种基于核主成分分析(KPCA)和ICOA-BP算法的故障诊断模型。通过KPCA算法对测量参数进行特征提取和降维,保证在特征充足的情况下降低数据的复杂性,减少计算成本,并提出一种改进后的浣熊优化算法(ICOA)优化BP神经网络,旨在提高BP神经网络诊断精度。利用液氧甲烷火箭发动机试车数据对算法进行验证,实验结果表明,ICOA-BP算法相较于COA-BP算法表现出更快的收敛速度和更高的寻优精度。在KPCA特征提取的数据上,ICOA-BP算法诊断准确率可以达到96.5%,相较于BP神经网络和支持向量机(SVM)诊断准确率分别提高3.5%和3%。同粒子群算法(PSO)和遗传算法(GA)相比,ICOA-BP算法展现出更优秀的全局最优解的搜索能力。 展开更多
关键词 液体火箭发动机 故障诊断 浣熊优化算法 BP神经网络 核主成分分析
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测
10
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于改进浣熊优化算法的食品分拣机器人机械臂时间最优轨迹规划
11
作者 蒋金伟 杨启志 +1 位作者 刘进福 张壮壮 《食品与机械》 北大核心 2025年第3期81-87,共7页
[目的]提高食品分拣机器人机械臂空间最优时间轨迹规划效率和稳定性。[方法]提出一种基于改进浣熊优化算法的食品分拣机器人机械臂时间最优轨迹规划方法。建立UR5六自由度机械臂模型,采用3-5-3多项式插值方法构造机械臂运动轨迹。借鉴... [目的]提高食品分拣机器人机械臂空间最优时间轨迹规划效率和稳定性。[方法]提出一种基于改进浣熊优化算法的食品分拣机器人机械臂时间最优轨迹规划方法。建立UR5六自由度机械臂模型,采用3-5-3多项式插值方法构造机械臂运动轨迹。借鉴光学折射物理现象对浣熊优化算法进行改进,利用改进后的浣熊优化算法优化求解机械臂轨迹规划问题,在满足角度、角速度、角加速度约束条件的同时尽可能缩短关节运动时间。[结果]仿真结果表明,与其他3种时间最优轨迹规划方法相比,所提方法轨迹运行时间降低了14.58%,21.20%,4.18%。[结论]所提方法能够缩短机械臂运行时间,有效提高机械臂工作效率。 展开更多
关键词 食品分拣 机械臂 浣熊优化算法 轨迹规划
在线阅读 下载PDF
基于WD-COA-LSTM模型的月降水量预测 被引量:5
12
作者 王文川 杨静欣 臧红飞 《水资源与水工程学报》 CSCD 北大核心 2022年第4期8-13,23,共7页
为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过... 为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。 展开更多
关键词 月降水量预测 小波分解 郊狼优化算法 长短期记忆神经网络
在线阅读 下载PDF
基于改进浣熊优化算法的多模态生物特征识别
13
作者 刘丰华 张琪 王财勇 《数据与计算发展前沿(中英文)》 2025年第1期56-67,共12页
【目的】为了提升身份识别的安全性与准确性,本文提出了一个在分数层融合虹膜、人脸、眼周三个模态的生物特征识别算法。【方法】首先,该算法使用轻量级卷积神经网络作为特征提取器,计算特征向量间的余弦相似度作为不同对象之间的匹配得... 【目的】为了提升身份识别的安全性与准确性,本文提出了一个在分数层融合虹膜、人脸、眼周三个模态的生物特征识别算法。【方法】首先,该算法使用轻量级卷积神经网络作为特征提取器,计算特征向量间的余弦相似度作为不同对象之间的匹配得分;其次,使用佳点集初始化提升浣熊优化算法的种群多样性,在探索阶段加入莱维飞行来增强全局搜索能力,通过改进浣熊优化算法求解三个模态得分在预定义融合规则下的最优参数;最后,通过Sch-weizer算子对不同参数组合进行模糊推理后,使用最小隶属度法去模糊化,得到最优分数融合规则及其参数。【结果】从CASIA-IrisV4-Distance数据集中构造同源面部多模态数据集进行对比实验,实验结果表明,与基线模型相比,本算法的等错误率(EER)的值降低0.89%,错误匹配率(FMR)为10-5时错误非匹配率(FNMR)的值降低3.32%,区分性指标提升0.61;与四种优化算法相比,本算法的识别精度更高。【结论】由此可见,本文所提算法在多模态分数层融合中获得了良好的识别效果。 展开更多
关键词 多模态融合 浣熊优化算法 生物特征识别 分数层融合
在线阅读 下载PDF
基于RTSMFE、M-KRCDA与COA-SVM的行星齿轮箱故障诊断 被引量:5
14
作者 戚晓利 崔创创 +2 位作者 杨艳 程主梓 陈旭 《振动与冲击》 EI CSCD 北大核心 2022年第21期109-120,共12页
针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized copl... 针对从行星齿轮箱非线性、非平稳振动信号中提取故障特征困难的问题,提出了一种基于精细时移多尺度模糊熵(refined time-shift multiscale fuzzy entropy,RTSMFE)、马氏距离的核正则化共面判别分析(Mahalanobis-kernel regularized coplanar discriminant analysis,M-KRCDA)以及郊狼优化算法优化支持向量机(coyote optimization algorithm-support vector machine,COA-SVM)的行星齿轮箱故障诊断方法。首先利用RTSMFE计算和组合行星齿轮箱原始故障信号的特征向量,构建原始高维故障特征集;然后采用M-KRCDA的特征筛选方法,减少了特征的维数并提高特征故障识别的准确性和效率;最后将低维特征输入到COA-SVM进行故障类型的判别。行星齿轮箱故障诊断试验结果分析表明,所提方法能够准确识别行星齿轮箱的常见故障,具有一定的应用前景。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移多尺度模糊熵(RTSMFE) 马氏距离的核正则化共面判别分析(M-KRCDA) 郊狼优化算法优化支持向量机(coa-SVM)
在线阅读 下载PDF
基于COA-ASRCKF的单液流锌镍电池SOC估计
15
作者 宋春宁 苏有平 +1 位作者 莫伟县 郑少耿 《电池》 CAS 北大核心 2021年第4期351-355,共5页
针对容积卡尔曼滤波(CKF)算法在迭代过程中存在诸多破坏协方差对称性和正定性的敏感操作,进而导致算法终止的现象,提出一种自适应平方根容积卡尔曼滤波(ASRCKF)算法。采用ASRCKF算法在估算单液流锌镍电池荷电状态(SOC)时,过程噪声协方差... 针对容积卡尔曼滤波(CKF)算法在迭代过程中存在诸多破坏协方差对称性和正定性的敏感操作,进而导致算法终止的现象,提出一种自适应平方根容积卡尔曼滤波(ASRCKF)算法。采用ASRCKF算法在估算单液流锌镍电池荷电状态(SOC)时,过程噪声协方差Q、量测噪声协方差初值R(0)和状态误差协方差初值P_(0)的设定,对估算精度和鲁棒性有重要影响。为此,应用郊狼优化算法(COA)对Q、R(0)和P_(0)进行参数寻优。实验结果表明,提出的COA-ASRCKF算法能较好地应用于单液流锌镍电池SOC估计。与CKF和ASRCKF算法相比,估算精度更高、鲁棒性更强,均方根误差小于1%。 展开更多
关键词 单液流锌镍电池 荷电状态(SOC) 郊狼优化算法(coa) 自适应平方根容积卡尔曼滤波(ASRCKF)算法 参数寻优
在线阅读 下载PDF
基于浣熊算法优化的DV-Hop定位算法
16
作者 张潇 姜金晶 +1 位作者 李新 彭彤 《现代信息科技》 2025年第2期16-23,32,共9页
针对无线传感器网络定位算法中DV-Hop(Distance Vector-Hop)算法定位精度误差大与定位稳定性差的问题,提出了一种基于浣熊算法(Coati Optimization Algorithm,COA)的DV-Hop优化定位方法。首先,该方法利用多通信半径来精准计算节点间的跳... 针对无线传感器网络定位算法中DV-Hop(Distance Vector-Hop)算法定位精度误差大与定位稳定性差的问题,提出了一种基于浣熊算法(Coati Optimization Algorithm,COA)的DV-Hop优化定位方法。首先,该方法利用多通信半径来精准计算节点间的跳数,同时运用加权跳距的策略,对未知节点的平均跳距进行精确修正,然后,用浣熊优化算法替代传统的三边测量法进行坐标位置估计,最终得到节点定位坐标。为了验证所提出的方法的有效性,文章对提出的改进算法进行了实验验证。结果表明,在同等条件下,在不同锚节点数量、不同通信半径和不同节点总数场景下,改进算法比传统DV-Hop算法的平均定位误差分别降低了61.64%、47.24%与65.11%,从而证明提出的改进算法具有良好的定位精度和较好的稳定性。 展开更多
关键词 DV-HOP算法 浣熊算法 多通信半径 加权跳距 节点定位
在线阅读 下载PDF
基于改进长鼻浣熊优化算法的光伏MPPT研究
17
作者 许海雷 周晓韡 叶罗 《水电与新能源》 2025年第2期33-37,共5页
在光照不均匀或局部阴影下,光伏阵列的输出呈现多极值现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)难以搜索全局最优输出功率。为了提升局部阴影下光伏阵列的发电效率,提出一种基于改进长鼻浣熊优化算法(ICOA)的PV-M... 在光照不均匀或局部阴影下,光伏阵列的输出呈现多极值现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)难以搜索全局最优输出功率。为了提升局部阴影下光伏阵列的发电效率,提出一种基于改进长鼻浣熊优化算法(ICOA)的PV-MPPT策略,结合立方混沌映射,以提高算法收敛速度和全局搜索能力。MATLAB/Simulink仿真结果表明,相较于传统智能算法,采用ICOA-MPPT控制策略,提高了跟踪速度和精度。 展开更多
关键词 光伏 局部阴影 最大功率追踪 长鼻浣熊优化算法
在线阅读 下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法 被引量:2
18
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
在线阅读 下载PDF
基于缩放框架的改进贝叶斯网络结构优化算法
19
作者 祁煜翔 钱龙霞 +1 位作者 王友国 黄海平 《南京邮电大学学报(自然科学版)》 北大核心 2024年第6期128-138,共11页
贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础... 贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础构建网络搜索空间,提高了网络结构的初始评分;其次,使用基于评分方法的浣熊优化算法寻找评分最高的网络结构,增强了在贝叶斯网络中的评分搜索能力;最后,对评分最高的结构进行加弧、减弧和转向弧操作,寻找拟合程度最高的最优结构。通过在不同复杂度的标准网络上进行模拟实验,结果表明:所提算法收敛速度更快,能够在较短时间内找到最优结构,且结构学习的评分更高,收敛精度较高。由此说明该算法在准确性和搜寻效率方面更有优势。 展开更多
关键词 贝叶斯网络 结构学习 缩放框架 评分方法 浣熊优化算法
在线阅读 下载PDF
电容悬浮间隙传感器非线性校正研究
20
作者 郑洋阳 王滢 +2 位作者 陈康 李贵 陈友豪 《传感器与微系统》 CSCD 北大核心 2024年第12期16-20,共5页
针对悬浮间隙传感器输出特性非线性严重的问题,提出一种结合径向基核函数和多项式核函数优点的混核最小二乘支持向量机(HKLSSVM)作为电容悬浮间隙传感器的非线性校正模型并采用浣熊优化算法(COA)对HKLSSVM的惩罚因子和核函数参数进行优... 针对悬浮间隙传感器输出特性非线性严重的问题,提出一种结合径向基核函数和多项式核函数优点的混核最小二乘支持向量机(HKLSSVM)作为电容悬浮间隙传感器的非线性校正模型并采用浣熊优化算法(COA)对HKLSSVM的惩罚因子和核函数参数进行优化。为验证模型的有效性,分别采用径向基神经网络模型、传统LSSVM模型、粒子群优化(PSO)算法-HKLSSVM模型以及COA-HKLSSVM模型进行非线性校正仿真分析。结果表明,COA-HKLSSVM模型在电容悬浮间隙传感器非线性校正的应用中表现出最佳的校正精度与稳定性,校正后的电容悬浮间隙传感器线性度为0.43%,均方根误差为0.022 mm,最大误差为0.068 mm,满足悬浮控制系统对悬浮间隙传感器的线性要求。 展开更多
关键词 电容悬浮间隙传感器 非线性校正 浣熊智能优化算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部