Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a...Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.展开更多
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
Artificial skin should embody a softly functional film that is capable of self-powering,healing and sensing with neuromorphic processing.However,the pursuit of a bionic skin that combines high flexibility,self-healabi...Artificial skin should embody a softly functional film that is capable of self-powering,healing and sensing with neuromorphic processing.However,the pursuit of a bionic skin that combines high flexibility,self-healability,and zero-powered photosynaptic functionality remains elusive.In this study,we report a self-powered and self-healable neuromorphic vision skin,featuring silver nanoparticle-doped ionogel heterostructure as photoacceptor.The localized surface plasmon resonance induced by light in the nanoparticles triggers temperature fluctuations within the heterojunction,facilitating ion migration for visual sensing with synaptic behaviors.The abundant reversible hydrogen bonds in the ionogel endow the skin with remarkable mechanical flexibility and self-healing properties.We assembled a neuromorphic visual skin equipped with a 5×5 photosynapse array,capable of sensing and memorizing diverse light patterns.展开更多
With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated produ...With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated production lines,especially in defect detection.Machine vision technology can be applied in many industries such as semiconductor,automobile manufacturing,aerospace,food,and drugs,which can significantly improve detection efficiency and accuracy,reduce labor costs,improve product quality,enhance market competitiveness,and provide strong support for the arrival of Industry 4.0 era.In this article,the concept,advantages,and disadvantages of machine vision and the algorithm framework of machine vision in the defect detection system are briefly described,aiming to promote the rapid development of industry and strengthen China’s industry.展开更多
Tropical cyclone(TC)intensity estimation is a fundamental aspect of TC monitoring and forecasting.Deep learning models have recently been employed to estimate TC intensity from satellite images and yield precise resul...Tropical cyclone(TC)intensity estimation is a fundamental aspect of TC monitoring and forecasting.Deep learning models have recently been employed to estimate TC intensity from satellite images and yield precise results.This work proposes the ViT-TC model based on the Vision Transformer(ViT)architecture.Satellite images of TCs,including infrared(IR),water vapor(WV),and passive microwave(PMW),are used as inputs for intensity estimation.Experiments indicate that combining IR,WV,and PMW as inputs yields more accurate estimations than other channel combinations.The ensemble mean technique is applied to enhance the model's estimations,reducing the root-mean-square error to 9.32 kt(knots,1 kt≈0.51 m s^(-1))and the mean absolute error to 6.49 kt,which outperforms traditional methods and is comparable to existing deep learning models.The model assigns high attention weights to areas with high PMW,indicating that PMW magnitude is essential information for the model's estimation.The model also allocates significance to the cloud-cover region,suggesting that the model utilizes the whole TC cloud structure and TC eye to determine TC intensity.展开更多
AIM:To evaluate the effects of refractive errors and binocular vision anomalies on the quality of life(QOL)of university students.METHODS:This cross-sectional analytical study was conducted on university students usin...AIM:To evaluate the effects of refractive errors and binocular vision anomalies on the quality of life(QOL)of university students.METHODS:This cross-sectional analytical study was conducted on university students using simple random sampling.Objective refraction,ocular alignment,vergence and accommodative performance were measured and assessed in all participants.Data on QOL were collected using the College of Optometrists in Vision Development-Quality of Life(COVD-QOL)Questionnaire.The effect of mentioned parameters on the QOL were evaluated.RESULTS:Totally 726 students with mean age of 21.35±1.88y were evaluated in this study,51.5%of whom were female.Esophoria was caused significantly lower QOL in the domains of somatic symptoms and occupationalphysical symptoms(P<0.05);Besides,esotropia decreased QOL in domains of somatic symptoms P=0.002 and psychological factors(P=0.023).Students with accommodation insufficiency experienced more symptoms in all domains(P<0.05)except for psychological factors(P=0.07).Increasing in the near point of convergence and accommodation and decreases QOL and increasing accommodative facility increases QOL(all P<0.05).Myopia and astigmatism cause decrease in QOL(both P<0.05),but hyperopic students had better QOL in comparison with others(P<0.05).CONCLUSION:Screening programs and treatment of refractive errors and binocular vision anomalies,especially phoria and accommodative insufficiency,positively impact the QOL and academic achievements of university students.展开更多
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi...This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.展开更多
With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply ...With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.
基金the National Key Research and Development Program of China(2021YFA0717900)National Natural Science Foundation of China(62471251,62405144,62288102,22275098,and 62174089)+1 种基金Basic Research Program of Jiangsu(BK20240033,BK20243057)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB402).
文摘Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems.
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.
基金the financial support from the National Natural Science Foundation of China(62274088,62288102)the Project funded by China Postdoctoral Science Foundation(2023M741657)+1 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB554)the Jiangsu Specially-Appointed Professor program。
文摘Artificial skin should embody a softly functional film that is capable of self-powering,healing and sensing with neuromorphic processing.However,the pursuit of a bionic skin that combines high flexibility,self-healability,and zero-powered photosynaptic functionality remains elusive.In this study,we report a self-powered and self-healable neuromorphic vision skin,featuring silver nanoparticle-doped ionogel heterostructure as photoacceptor.The localized surface plasmon resonance induced by light in the nanoparticles triggers temperature fluctuations within the heterojunction,facilitating ion migration for visual sensing with synaptic behaviors.The abundant reversible hydrogen bonds in the ionogel endow the skin with remarkable mechanical flexibility and self-healing properties.We assembled a neuromorphic visual skin equipped with a 5×5 photosynapse array,capable of sensing and memorizing diverse light patterns.
文摘With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated production lines,especially in defect detection.Machine vision technology can be applied in many industries such as semiconductor,automobile manufacturing,aerospace,food,and drugs,which can significantly improve detection efficiency and accuracy,reduce labor costs,improve product quality,enhance market competitiveness,and provide strong support for the arrival of Industry 4.0 era.In this article,the concept,advantages,and disadvantages of machine vision and the algorithm framework of machine vision in the defect detection system are briefly described,aiming to promote the rapid development of industry and strengthen China’s industry.
基金Research funding for this project was provided by the National Natural Science Foundation of China(Grant Nos.42192563 and 42120104001)the Hong Kong RGC General Research Fund(Grant No.11300920)+1 种基金Anhui Provincial Natural Science Foundation(Grant Nos.2208085UQ12,2308085US01)Anhui&Huaihe River Institute of Hydraulic Research(Grant Nos.KJGG202201,KY202306)。
文摘Tropical cyclone(TC)intensity estimation is a fundamental aspect of TC monitoring and forecasting.Deep learning models have recently been employed to estimate TC intensity from satellite images and yield precise results.This work proposes the ViT-TC model based on the Vision Transformer(ViT)architecture.Satellite images of TCs,including infrared(IR),water vapor(WV),and passive microwave(PMW),are used as inputs for intensity estimation.Experiments indicate that combining IR,WV,and PMW as inputs yields more accurate estimations than other channel combinations.The ensemble mean technique is applied to enhance the model's estimations,reducing the root-mean-square error to 9.32 kt(knots,1 kt≈0.51 m s^(-1))and the mean absolute error to 6.49 kt,which outperforms traditional methods and is comparable to existing deep learning models.The model assigns high attention weights to areas with high PMW,indicating that PMW magnitude is essential information for the model's estimation.The model also allocates significance to the cloud-cover region,suggesting that the model utilizes the whole TC cloud structure and TC eye to determine TC intensity.
文摘AIM:To evaluate the effects of refractive errors and binocular vision anomalies on the quality of life(QOL)of university students.METHODS:This cross-sectional analytical study was conducted on university students using simple random sampling.Objective refraction,ocular alignment,vergence and accommodative performance were measured and assessed in all participants.Data on QOL were collected using the College of Optometrists in Vision Development-Quality of Life(COVD-QOL)Questionnaire.The effect of mentioned parameters on the QOL were evaluated.RESULTS:Totally 726 students with mean age of 21.35±1.88y were evaluated in this study,51.5%of whom were female.Esophoria was caused significantly lower QOL in the domains of somatic symptoms and occupationalphysical symptoms(P<0.05);Besides,esotropia decreased QOL in domains of somatic symptoms P=0.002 and psychological factors(P=0.023).Students with accommodation insufficiency experienced more symptoms in all domains(P<0.05)except for psychological factors(P=0.07).Increasing in the near point of convergence and accommodation and decreases QOL and increasing accommodative facility increases QOL(all P<0.05).Myopia and astigmatism cause decrease in QOL(both P<0.05),but hyperopic students had better QOL in comparison with others(P<0.05).CONCLUSION:Screening programs and treatment of refractive errors and binocular vision anomalies,especially phoria and accommodative insufficiency,positively impact the QOL and academic achievements of university students.
基金funded by the Deanship of Research and Graduate Studies at King Khalid University through small group research under grant number RGP1/278/45.
文摘This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.
文摘With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.