Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost ...Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost unexplored.Here,we present a highly efficient optical computing protocol for complex vector convolution with the superposition of high-dimensional OAM eigenmodes.We used two cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors.Then,a deep-learning strategy is devised to decode the complex OAM spectrum,thus accomplishing the optical convolution task.In our experiment,we succeed in demonstrating 7-,9-,and 11-dimensional complex vector convolutions,in which an average proximity better than 95%and a mean relative error<6%are achieved.Our present scheme can be extended to incorporate other degrees of freedom for a more versatile optical computing in the high-dimensional Hilbert space.展开更多
Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long...Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long wavelength,limiting their application of fields practical use.In this paper,we proposed a complex one-shot super-resolution(COSSR)framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF.Compared with real convolution neural network-based approaches and complex zero-shot super-resolution(CZSSR),COSSR delivers at least 6.67,0.003,and 6.96%superior higher imaging efficacy in terms of peak signal to noise ratio(PSNR),mean square error(MSE),and structural similarity index measure(SSIM),respectively,for the analyzed data.Additionally,the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data.The COSSR provides a new pathway for THz imaging super-resolution(SR)reconstruction below the diffraction limit.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12034016,61975169,and 11904303)the Youth Innovation Fund of Xiamen(Grant No.3502Z20206045)+2 种基金the Fundamental Research Funds for the Central Universities at Xiamen University(Grant Nos.20720200074 and 20720220030)the Natural Science Foundation of Fujian Province of China(Grant No.2021J02002)and for Distinguished Young Scientists(Grant No.2015J06002)the Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0495).
文摘Orbital angular momentum(OAM),emerging as an inherently high-dimensional property of photons,has boosted information capacity in optical communications.However,the potential of OAM in optical computing remains almost unexplored.Here,we present a highly efficient optical computing protocol for complex vector convolution with the superposition of high-dimensional OAM eigenmodes.We used two cascaded spatial light modulators to prepare suitable OAM superpositions to encode two complex vectors.Then,a deep-learning strategy is devised to decode the complex OAM spectrum,thus accomplishing the optical convolution task.In our experiment,we succeed in demonstrating 7-,9-,and 11-dimensional complex vector convolutions,in which an average proximity better than 95%and a mean relative error<6%are achieved.Our present scheme can be extended to incorporate other degrees of freedom for a more versatile optical computing in the high-dimensional Hilbert space.
基金"XingLiaoYingCai"Talents of Liaoning Province,China(Grant No.XLYC2007074)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(Grant No.RC200512)+1 种基金Project supported by“XingLiaoYingCai"Talents of Liaoning Province,China(Grant No.XLYC2007074)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(Grant No.RC200512),。
文摘Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long wavelength,limiting their application of fields practical use.In this paper,we proposed a complex one-shot super-resolution(COSSR)framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF.Compared with real convolution neural network-based approaches and complex zero-shot super-resolution(CZSSR),COSSR delivers at least 6.67,0.003,and 6.96%superior higher imaging efficacy in terms of peak signal to noise ratio(PSNR),mean square error(MSE),and structural similarity index measure(SSIM),respectively,for the analyzed data.Additionally,the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data.The COSSR provides a new pathway for THz imaging super-resolution(SR)reconstruction below the diffraction limit.