期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors
1
作者 Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2111-2128,共18页
The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new wor... The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new worker.Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques.Despite widespread com-puter vision-based approaches,it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where cam-era deployment is problematic.Through the use of wearable inertial sensors,we propose a deep learning method for automatically recognizing the activities of construction workers.The suggested method incorporates a convolutional neural network,residual connection blocks,and multi-branch aggregate transformation modules for high-performance recognition of complicated activities such as con-struction worker tasks.The proposed approach has been evaluated using standard performance measures,such as precision,F1-score,and AUC,using a publicly available benchmark dataset known as VTT-ConIoT,which contains genuine con-struction work activities.In addition,standard deep learning models(CNNs,RNNs,and hybrid models)were developed in different empirical circumstances to compare them to the proposed model.With an average accuracy of 99.71%and an average F1-score of 99.71%,the experimentalfindings revealed that the suggested model could accurately recognize the actions of construction workers.Furthermore,we examined the impact of window size and sensor position on the identification efficiency of the proposed method. 展开更多
关键词 complex human activity recognition wearable inertial sensors deep learning construction workers automatic recognition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部