A configurable U-Net architecture is trained to solve the multi-scale elliptical partial differential equations.The motivation is to improve the computational cost of the numerical solution of Navier-Stokes equations...A configurable U-Net architecture is trained to solve the multi-scale elliptical partial differential equations.The motivation is to improve the computational cost of the numerical solution of Navier-Stokes equations–the governing equations for fluid dynamics.Building on the underlying concept of V-Cycle multigrid methods,a neural network framework using U-Net architecture is optimized to solve the Poisson equation and Helmholtz equations–the characteristic form of the discretized Navier-Stokes equations.The results demonstrate the optimized U-Net captures the high dimensional mathematical features of the elliptical operator and with a better convergence than the multigrid method.The optimal performance between the errors and the FLOPS is the(3,2,5)case with 3 stacks of UNets,with 2 initial features,5 depth layers and with ELU activation.Further,by training the network with the multi-scale synthetic data the finer features of the physical system are captured.展开更多
Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuver...Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.展开更多
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi...This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ...Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).展开更多
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num...Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.展开更多
The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baf...The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed.展开更多
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e...This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.展开更多
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam...Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.展开更多
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base...To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head.展开更多
River bank erosion models are an important prerequisite for understanding the development of river meanders and for estimating likely land-loss and potential danger to floodplain infrastructure. Although bank erosion ...River bank erosion models are an important prerequisite for understanding the development of river meanders and for estimating likely land-loss and potential danger to floodplain infrastructure. Although bank erosion models have been developed that consider large-scale mass failure, the contribution of fluvial erosion (the process of particle-by-particle erosion due to the shearing action of the river flow) to bank retreat has not received as much consideration. In principle, such fluvial bank erosion rates can be quantified using excess shear stress formulations, but in practice, it has proven difficult to estimate the parameters involved. In this study, a series of three-dimensional Computational Fluid Dynamics (CFD) simulations for a meander loop on the River Asker (200 m long) at Bridport in southern England were undertaken to elucidate the overall flow structures and in particular to provide estimates of the applied fluid shear stress exerted on the riverbanks. The CFD models, which simulated relatively low and relatively high flow conditions, were established using Fluent 6.2 software. The modelling outcomes show that the key qualitative features of the flow endure even as flow discharge varies. At bank full, the degrees of velocity and simulated shear stresses within the inner bank separation zones are shown to be higher than those observed under low flow conditions, and that these elevated shear stresses may be sufficient to result in the removal of accumulated sediments into the main downstream flow.展开更多
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli...Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.展开更多
The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibi...The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibility, which strongly influences the accuracy of the flow ripple simulation results, is often neglected. So a compressible sub-model was added with user defined function(UDF) in the CFD model to predict the flow ripple. At the same time, a test rig of flow ripple was built to study the validity of simulation. The flow ripple of pump was tested with different working parameters, including the rotation speed and the working pressure. The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow tipple characteristics. In this paper, the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order. Therefore, the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation. The compressibility of hydraulic oil has significant effect on flow ripple, and the compression ripple takes about 88% of the total flow ripple of pump. Leakage ripple has the lowest proportion of about 4%, and geometrical ripple leakage ripple takes the remnant 8%. Besides, the influence of working parameters was investigated through the CFD simulations and experimental measurements. Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure, and the flow ripple rate is independent of the rotation speed. However, flow ripple rate of piston pump grows with the increasing of working pressure, because the leakage ripple will increase with the pressure growing. The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump.展开更多
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was...A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...展开更多
The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving ...The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure p...It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.展开更多
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ...A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.展开更多
文摘A configurable U-Net architecture is trained to solve the multi-scale elliptical partial differential equations.The motivation is to improve the computational cost of the numerical solution of Navier-Stokes equations–the governing equations for fluid dynamics.Building on the underlying concept of V-Cycle multigrid methods,a neural network framework using U-Net architecture is optimized to solve the Poisson equation and Helmholtz equations–the characteristic form of the discretized Navier-Stokes equations.The results demonstrate the optimized U-Net captures the high dimensional mathematical features of the elliptical operator and with a better convergence than the multigrid method.The optimal performance between the errors and the FLOPS is the(3,2,5)case with 3 stacks of UNets,with 2 initial features,5 depth layers and with ELU activation.Further,by training the network with the multi-scale synthetic data the finer features of the physical system are captured.
文摘Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.
基金the financial support for this work provided by the National Key R&D Program of China‘Technologies and Integrated Application of Magnesite Waste Utilization for High-Valued Chemicals and Materials’(2020YFC1909303)。
文摘This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).
基金National Natural Science Foundation of China (No.50435030)
文摘Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
文摘The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed.
文摘This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds.
文摘Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.
基金“Strategic Cooperation of Science and Technology between Nanchong City and Southwest Petroleum University 2018” Special Fund Project,China(Nos.18SXHZ0030,18SXHZ0054)
文摘To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head.
文摘River bank erosion models are an important prerequisite for understanding the development of river meanders and for estimating likely land-loss and potential danger to floodplain infrastructure. Although bank erosion models have been developed that consider large-scale mass failure, the contribution of fluvial erosion (the process of particle-by-particle erosion due to the shearing action of the river flow) to bank retreat has not received as much consideration. In principle, such fluvial bank erosion rates can be quantified using excess shear stress formulations, but in practice, it has proven difficult to estimate the parameters involved. In this study, a series of three-dimensional Computational Fluid Dynamics (CFD) simulations for a meander loop on the River Asker (200 m long) at Bridport in southern England were undertaken to elucidate the overall flow structures and in particular to provide estimates of the applied fluid shear stress exerted on the riverbanks. The CFD models, which simulated relatively low and relatively high flow conditions, were established using Fluent 6.2 software. The modelling outcomes show that the key qualitative features of the flow endure even as flow discharge varies. At bank full, the degrees of velocity and simulated shear stresses within the inner bank separation zones are shown to be higher than those observed under low flow conditions, and that these elevated shear stresses may be sufficient to result in the removal of accumulated sediments into the main downstream flow.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z413)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1110109)
文摘Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
基金supported by National Key Technology R&D Program of the Eleventh Five-year Plan of China (Grant No. 2006BAF01B01, Grant No. 2006BAF01B04)Open Foundation of State Key Laboratory of Mechanical System and Vibration of China (Grant No. MSV-2009-02)
文摘The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibility, which strongly influences the accuracy of the flow ripple simulation results, is often neglected. So a compressible sub-model was added with user defined function(UDF) in the CFD model to predict the flow ripple. At the same time, a test rig of flow ripple was built to study the validity of simulation. The flow ripple of pump was tested with different working parameters, including the rotation speed and the working pressure. The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow tipple characteristics. In this paper, the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order. Therefore, the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation. The compressibility of hydraulic oil has significant effect on flow ripple, and the compression ripple takes about 88% of the total flow ripple of pump. Leakage ripple has the lowest proportion of about 4%, and geometrical ripple leakage ripple takes the remnant 8%. Besides, the influence of working parameters was investigated through the CFD simulations and experimental measurements. Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure, and the flow ripple rate is independent of the rotation speed. However, flow ripple rate of piston pump grows with the increasing of working pressure, because the leakage ripple will increase with the pressure growing. The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump.
基金The authors are grateful to"Chemical Grid Project"of Beijing University of Chemical Technology for providingthe computer facilities.
文摘A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...
基金Supported by the National Natural Science Foundation of China (Nos.20236050, 50134020) and the Special Funds for Major State Basic Research Program of China (973 Program, 2004CB217604).
文摘The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金Supported by the National Natural Science Foundation of China(21677018)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(KZ201810017024)
文摘It is generally recognized that internal-loop reactors are well-developed mass and heat-transfer multiphase flow reactors. However, the internal flow field in the internal-loop reactor is influenced by the structure parameter of the reactor, which has a great effect on the reaction efficiency. In this study, the computational fluid dynamics simulation method was used to determine the influence of reactor structure on flow field, and a volume-offluid model was employed to simulate the gas–liquid, two-phase flow of the internal-loop micro-electrolysis reactor. Hydrodynamic factors were optimized when the height-to-diameter ratio was 4:1, diameter ratio was9:1, draft-tube axial height was 90 mm. Three-dimensional simulations for the water distributor were carried out, and the results suggested that the optimal conditions are as follows: the number of water distribution pipes was four, and an inhomogeneous water distribution was used. According to the results of the simulation,the suitable structure can be used to achieve good fluid mechanical properties, such as the good liquid circulation velocity and gas holdup, which provides a good theoretical foundation for the application of the reactor.
基金support by the National Basic Research Program (Grant No. 2010CB226906,and 2012CB215000)
文摘A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.