[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to...[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to provide basis for scientific application of biogas slurry.[Methods]The fields with different years of continuous application of biogas slurry in Dingnan Rare Earth Tailings Ecological Restoration Demonstration Park were selected as the research object,and the differences in soil physical and chemical properties and microbial community structure after application of biogas slurry for different years(0,3 and 5 years)were studied.[Results]The bulk density of soil with continuous application of biogas slurry showed a downward trend,while the maximum water holding capacity,capillary water holding capacity,porosity,aeration,pH,organic matter,nitrogen,phosphorus and potassium,alkali-hydrolyzable nitrogen and available phosphorus showed an upward trend.Moreover,the effects achieved by application for 5 years were better than those by application for 3 years.Continuous application of biogas slurry could significantly improve the activity of soil urease,acid phosphatase,sucrase and cellulase,and it effects increased with the application year increasing.Continuous application of biogas slurry could significantly improve the abundance of dominant bacteria in soil,and with the increase of application years,the abundances of dominant bacteria also increased.[Conclusions]Continuous application of biogas slurry effectively improved soil physical and chemical properties and soil fertility in rare earth tailings areas where Pennisetum×sinese was planted to restore rare earth tailings.This study provides a theoretical support for establishing key ecological restoration technoiques.展开更多
Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore st...Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.展开更多
Application of nitrogen (N) fertilizer is one of the most important approaches on improving maize grain yield. However, as is known to all, overuse N fertilizer not only leads to decline of N use efficiency and maize ...Application of nitrogen (N) fertilizer is one of the most important approaches on improving maize grain yield. However, as is known to all, overuse N fertilizer not only leads to decline of N use efficiency and maize yield, but also leads to potential risk to environment pollution. This experiment was conducted to determine the effects of N fertilizer applications with nine different treatments on soil physical-chemical characters and maize grain yield using hybrid variety Zhengdan 958 in 2011 and 2012. Results indicated that the soil bulk densities of T2 (CK) and T1 were the lowest compared to other treatments in 2011 and 2012, respectively, whereas the soil bulk density of T5 in 2011 and T3 in 2012 were higher than other treatments. The soil porosity and field capacity of T5 in 2011 and T3 in 2012 were lower than other treatments, but those of CK in 2011 and T1 in 2012 were higher than other treatments. The pH values of T3 to T7 were lower than other treatments. These results indicated that the soil bulk densities were increased, whereas the soil porosity, field capacity and values pH were decreased by N application at different stages. N application could increase the N contents of leaf and stem, whereas less or excess N application should not significant improve maize yield. Although the soil organic matter and total N contents of T3 were the highest in both 2011 and 2012, the yield of T4 is the highest in both 2011 and 2012. The application amount, period and times of N fertilizer were important to maize yield.展开更多
This article, by comparing the basic concepts of substrate and soil, their composition of substance and methods of measuring the indexes of physical and chemical properties, analyzes and researches ways of choosing su...This article, by comparing the basic concepts of substrate and soil, their composition of substance and methods of measuring the indexes of physical and chemical properties, analyzes and researches ways of choosing substrate for cultivation with facilities. It indicates that the normal physical and chemical indexes of evaluating a substrate are bulk density, total porosity, non-capillary porosity, ratio of big porosity to small porosity, the pH and the electrical conductivity (EC) value of the substrate. By measuring the physical and chemical properties of the substrate in different prescription and the cultivation experiments, the best substrate can be sieved.展开更多
To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―corallin...To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―coralline through hydrothermal exchange process. This process was designed and developed independently by the authors. Its physical and chemical characteristics have been determined and studied using various techniques including Scanning Electron Microscopy (SEM), electron microscope image processing, scanning electron microscope energy spectrography; chemical analysis, ICP-AES, X-ray diffraction, etc. Clinical trials have been conducted. Results: Independently developed CHA bone graft-substitute is white in color; its porosity is 25.87%–53.58%, which is approximate to that of human bones and original coral. It is larger than 3–4 in hardness by Mohs hardness scale and the compressive strength ranges from 4.87 to 12.31 MPa. The chemical compositions of the CHA are 53.13%–64.09% CaO and 35.52%–46.48% P2O5. CaO/P2O5 is 1.143–1.804. ICP-AES analysis detected twenty-four trace elements including Pb, Co, Ni, Ba, Mn, Cr, Th, V, Cu, Ti, K, Mo, Zn, Mg, Nb, Be, Sc, Al, Sr, Na, Li, etc. Ca, P, K, Na, Al and Sr are relatively high while the rest are less than n–n×10-6, which is acceptable by human body. The REE level in the CHA bone measured by ICP-MS is 1.433×10-9–2.212×10-9, which is within the acceptable range for human beings. Conclusions: The process of synthesized CHA bone graft-substitute is an innovated independently developed method and concept. Its color, porosity and chemical composition are similar to those of human bones; therefore it has very good biocompatibility and excellent conductivity. Sixty clinical cases have proved that CHA bone graft-substitute has a strong bone-forming ability, no toxicity, no side effect, and better sacralization. It is a fine substitute for bone transplantation.展开更多
Seismic Rock physics plays a bridge role between the rock moduli and physical properties of the hydrocarbon reservoirs.Prestack seismic inversion is an important method for the quantitative characterization of elastic...Seismic Rock physics plays a bridge role between the rock moduli and physical properties of the hydrocarbon reservoirs.Prestack seismic inversion is an important method for the quantitative characterization of elasticity,physical properties,lithology and fluid properties of subsurface reservoirs.In this paper,a high order approximation of rock physics model for clastic rocks is established and one seismic AVO reflection equation characterized by the high order approximation(Jacobian and Hessian matrix)of rock moduli is derived.Besides,the contribution of porosity,shale content and fluid saturation to AVO reflectivity is analyzed.The feasibility of the proposed AVO equation is discussed in the direct estimation of rock physical properties.On the basis of this,one probabilistic AVO inversion based on differential evolution-Markov chain Monte Carlo stochastic model is proposed on the premise that the model parameters obey Gaussian mixture probability prior model.The stochastic model has both the global optimization characteristics of the differential evolution algorithm and the uncertainty analysis ability of Markov chain Monte Carlo model.Through the cross parallel of multiple Markov chains,multiple stochastic solutions of the model parameters can be obtained simultaneously,and the posterior probability density distribution of the model parameters can be simulated effectively.The posterior mean is treated as the optimal solution of the model to be inverted.Besides,the variance and confidence interval are utilized to evaluate the uncertainties of the estimated results,so as to realize the simultaneous estimation of reservoir elasticity,physical properties,discrete lithofacies and dry rock skeleton.The validity of the proposed approach is verified by theoretical tests and one real application case in eastern China.展开更多
In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced...In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced plasma source and studying the corresponding physical mechanism, and characterizing the optical properties of crystals, etc.展开更多
In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
[Objective]The paper was to clarify the application of biochemical fulvic acid potassium on the survival rate and growth of various trees transplanted in the process of landscaping.[Method]Two experimental treatments(...[Objective]The paper was to clarify the application of biochemical fulvic acid potassium on the survival rate and growth of various trees transplanted in the process of landscaping.[Method]Two experimental treatments(i.e.decomposed organic fertilizer+biochemical fulvic acid potassium water soluble fertilizer,decomposed organic fertilizer+compound fertilizer)were designed to determine the changes in physical and chemical properties before and after soil treatment,and the survival rate,plant height and ground diameter of four different cultivated plants within one year,and the effects of applying biochemical fulvic acid potassium on cultivated plants were investigated.[Result]The soil organic matter,total nitrogen,alkali-hydrolyzable nitrogen,soil available phosphorus,soil available potassium and p H value in the soil treated with decomposed organic fertilizer+biochemical fulvic acid potassium soluble fertilizer,and decomposed organic fertilizer+compound fertilizer increased significantly,and the soil bulk density decreased obviously.The survival rates,plant heights and ground diameters of four different cultivated plants were significantly improved after application of decomposed organic fertilizer+biochemical fulvic acid potassium water soluble fertilizer,and decomposed organic fer-tilizer+compound fertilizer(P<0.05).[Conclusion]The application of biochemical fulvic acid potassium on cultivated plants effectively improved soil fertility,increased the utilization of nitrogen,phosphorus and potassium,improved the growth of plants,and promoted the growth of landscaping plants after transplantation.展开更多
Ancient Chinese philosophers discovered Yin and Yang and the laws of Yin and Yang movement during their exploration and practice of nature more than two thousand years ago, and applied them to life, science, philosoph...Ancient Chinese philosophers discovered Yin and Yang and the laws of Yin and Yang movement during their exploration and practice of nature more than two thousand years ago, and applied them to life, science, philosophy and medicine, playing an important role in the achievement of ancient Chinese civilization. Through historical changes, yin and yang have gradually been regarded as a concept or theory, thus making it difficult for people to understand the connotation of Yin-Yang and make new discoveries and progress. Nowadays, many scholars in China and the West are interested in studying the treasures of ancient Chinese civilization. We illustrate the actual function of Yin and Yang by explaining the essential state of matter, the law of physical movement, the transformation of energy, and then illustrate the practical application in life and science. In conclusion, yin-yang is a key to unlocking the treasures of traditional Chinese civilization, which can help to bring into play its original values, and continue to provide new insights and directions for the development of modern science and the advancement of humanities.展开更多
Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pu...Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
文摘[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to provide basis for scientific application of biogas slurry.[Methods]The fields with different years of continuous application of biogas slurry in Dingnan Rare Earth Tailings Ecological Restoration Demonstration Park were selected as the research object,and the differences in soil physical and chemical properties and microbial community structure after application of biogas slurry for different years(0,3 and 5 years)were studied.[Results]The bulk density of soil with continuous application of biogas slurry showed a downward trend,while the maximum water holding capacity,capillary water holding capacity,porosity,aeration,pH,organic matter,nitrogen,phosphorus and potassium,alkali-hydrolyzable nitrogen and available phosphorus showed an upward trend.Moreover,the effects achieved by application for 5 years were better than those by application for 3 years.Continuous application of biogas slurry could significantly improve the activity of soil urease,acid phosphatase,sucrase and cellulase,and it effects increased with the application year increasing.Continuous application of biogas slurry could significantly improve the abundance of dominant bacteria in soil,and with the increase of application years,the abundances of dominant bacteria also increased.[Conclusions]Continuous application of biogas slurry effectively improved soil physical and chemical properties and soil fertility in rare earth tailings areas where Pennisetum×sinese was planted to restore rare earth tailings.This study provides a theoretical support for establishing key ecological restoration technoiques.
基金supported by the National Natural Science Foundation of China (42104121)the Scientific Research and Technology Development Project of the CNPC (2021DJ0606)。
文摘Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.
文摘Application of nitrogen (N) fertilizer is one of the most important approaches on improving maize grain yield. However, as is known to all, overuse N fertilizer not only leads to decline of N use efficiency and maize yield, but also leads to potential risk to environment pollution. This experiment was conducted to determine the effects of N fertilizer applications with nine different treatments on soil physical-chemical characters and maize grain yield using hybrid variety Zhengdan 958 in 2011 and 2012. Results indicated that the soil bulk densities of T2 (CK) and T1 were the lowest compared to other treatments in 2011 and 2012, respectively, whereas the soil bulk density of T5 in 2011 and T3 in 2012 were higher than other treatments. The soil porosity and field capacity of T5 in 2011 and T3 in 2012 were lower than other treatments, but those of CK in 2011 and T1 in 2012 were higher than other treatments. The pH values of T3 to T7 were lower than other treatments. These results indicated that the soil bulk densities were increased, whereas the soil porosity, field capacity and values pH were decreased by N application at different stages. N application could increase the N contents of leaf and stem, whereas less or excess N application should not significant improve maize yield. Although the soil organic matter and total N contents of T3 were the highest in both 2011 and 2012, the yield of T4 is the highest in both 2011 and 2012. The application amount, period and times of N fertilizer were important to maize yield.
文摘This article, by comparing the basic concepts of substrate and soil, their composition of substance and methods of measuring the indexes of physical and chemical properties, analyzes and researches ways of choosing substrate for cultivation with facilities. It indicates that the normal physical and chemical indexes of evaluating a substrate are bulk density, total porosity, non-capillary porosity, ratio of big porosity to small porosity, the pH and the electrical conductivity (EC) value of the substrate. By measuring the physical and chemical properties of the substrate in different prescription and the cultivation experiments, the best substrate can be sieved.
基金supportedby the funds from both Science-Technology Department of Guangdong and Science-Technology Department of Guangzhou
文摘To develop synthesized coralline hydroxyl apatite (CHA) bone graftsubstitute and measure its physical and chemical characteristics. Methods: The CHA bone graft substitute was synthesized from natural mineral―coralline through hydrothermal exchange process. This process was designed and developed independently by the authors. Its physical and chemical characteristics have been determined and studied using various techniques including Scanning Electron Microscopy (SEM), electron microscope image processing, scanning electron microscope energy spectrography; chemical analysis, ICP-AES, X-ray diffraction, etc. Clinical trials have been conducted. Results: Independently developed CHA bone graft-substitute is white in color; its porosity is 25.87%–53.58%, which is approximate to that of human bones and original coral. It is larger than 3–4 in hardness by Mohs hardness scale and the compressive strength ranges from 4.87 to 12.31 MPa. The chemical compositions of the CHA are 53.13%–64.09% CaO and 35.52%–46.48% P2O5. CaO/P2O5 is 1.143–1.804. ICP-AES analysis detected twenty-four trace elements including Pb, Co, Ni, Ba, Mn, Cr, Th, V, Cu, Ti, K, Mo, Zn, Mg, Nb, Be, Sc, Al, Sr, Na, Li, etc. Ca, P, K, Na, Al and Sr are relatively high while the rest are less than n–n×10-6, which is acceptable by human body. The REE level in the CHA bone measured by ICP-MS is 1.433×10-9–2.212×10-9, which is within the acceptable range for human beings. Conclusions: The process of synthesized CHA bone graft-substitute is an innovated independently developed method and concept. Its color, porosity and chemical composition are similar to those of human bones; therefore it has very good biocompatibility and excellent conductivity. Sixty clinical cases have proved that CHA bone graft-substitute has a strong bone-forming ability, no toxicity, no side effect, and better sacralization. It is a fine substitute for bone transplantation.
基金supported by the National Grand Project for Science and Technology(Grant Nos.2016ZX05024-004,2017ZX05009-001,2017ZX05036-005)the Science Foundation from SINOPEC Key Laboratory of Geophysics(Grant No.WTYJY-WX2019-0104)。
文摘Seismic Rock physics plays a bridge role between the rock moduli and physical properties of the hydrocarbon reservoirs.Prestack seismic inversion is an important method for the quantitative characterization of elasticity,physical properties,lithology and fluid properties of subsurface reservoirs.In this paper,a high order approximation of rock physics model for clastic rocks is established and one seismic AVO reflection equation characterized by the high order approximation(Jacobian and Hessian matrix)of rock moduli is derived.Besides,the contribution of porosity,shale content and fluid saturation to AVO reflectivity is analyzed.The feasibility of the proposed AVO equation is discussed in the direct estimation of rock physical properties.On the basis of this,one probabilistic AVO inversion based on differential evolution-Markov chain Monte Carlo stochastic model is proposed on the premise that the model parameters obey Gaussian mixture probability prior model.The stochastic model has both the global optimization characteristics of the differential evolution algorithm and the uncertainty analysis ability of Markov chain Monte Carlo model.Through the cross parallel of multiple Markov chains,multiple stochastic solutions of the model parameters can be obtained simultaneously,and the posterior probability density distribution of the model parameters can be simulated effectively.The posterior mean is treated as the optimal solution of the model to be inverted.Besides,the variance and confidence interval are utilized to evaluate the uncertainties of the estimated results,so as to realize the simultaneous estimation of reservoir elasticity,physical properties,discrete lithofacies and dry rock skeleton.The validity of the proposed approach is verified by theoretical tests and one real application case in eastern China.
基金supported by the National Basic Research Program of China under Grant No.2014CB339802,No.2011CB808100the National Natural Science Foundation of China under Grant No.11174156
文摘In this work, we review the developing progress of two-dimensional terahertz time-domain spectroscopy(THz-TDS) and its diverse applications, including analyzing the polarization of THz radiation from a laser-induced plasma source and studying the corresponding physical mechanism, and characterizing the optical properties of crystals, etc.
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201503119-03-02)。
文摘[Objective]The paper was to clarify the application of biochemical fulvic acid potassium on the survival rate and growth of various trees transplanted in the process of landscaping.[Method]Two experimental treatments(i.e.decomposed organic fertilizer+biochemical fulvic acid potassium water soluble fertilizer,decomposed organic fertilizer+compound fertilizer)were designed to determine the changes in physical and chemical properties before and after soil treatment,and the survival rate,plant height and ground diameter of four different cultivated plants within one year,and the effects of applying biochemical fulvic acid potassium on cultivated plants were investigated.[Result]The soil organic matter,total nitrogen,alkali-hydrolyzable nitrogen,soil available phosphorus,soil available potassium and p H value in the soil treated with decomposed organic fertilizer+biochemical fulvic acid potassium soluble fertilizer,and decomposed organic fertilizer+compound fertilizer increased significantly,and the soil bulk density decreased obviously.The survival rates,plant heights and ground diameters of four different cultivated plants were significantly improved after application of decomposed organic fertilizer+biochemical fulvic acid potassium water soluble fertilizer,and decomposed organic fer-tilizer+compound fertilizer(P<0.05).[Conclusion]The application of biochemical fulvic acid potassium on cultivated plants effectively improved soil fertility,increased the utilization of nitrogen,phosphorus and potassium,improved the growth of plants,and promoted the growth of landscaping plants after transplantation.
文摘Ancient Chinese philosophers discovered Yin and Yang and the laws of Yin and Yang movement during their exploration and practice of nature more than two thousand years ago, and applied them to life, science, philosophy and medicine, playing an important role in the achievement of ancient Chinese civilization. Through historical changes, yin and yang have gradually been regarded as a concept or theory, thus making it difficult for people to understand the connotation of Yin-Yang and make new discoveries and progress. Nowadays, many scholars in China and the West are interested in studying the treasures of ancient Chinese civilization. We illustrate the actual function of Yin and Yang by explaining the essential state of matter, the law of physical movement, the transformation of energy, and then illustrate the practical application in life and science. In conclusion, yin-yang is a key to unlocking the treasures of traditional Chinese civilization, which can help to bring into play its original values, and continue to provide new insights and directions for the development of modern science and the advancement of humanities.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.11674161,11174122 and 11134004)the Six Big Talent Peak Project from Jiangsu Province(Grant No.XCL-004)open project of National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M28026)
文摘Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural char- acterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined. ~ 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.