Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing the...Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing their benefits and limitations.We also highlight the reasons in adopting wireless technologies,in particular,IEEE 802.11 p and 5 G vehicle-toeverything,as well as the use of paradigms able to store and analyze a vast amount of data to produce intelligence and their applications in vehicular environments.We also correlate the use of each of these paradigms with the desire to meet existing intelligent transportation systems’requirements.The presentation of each paradigm is given from a historical and logical standpoint.In particular,vehicular fog computing improves on the deficiences of vehicular cloud computing,so both are not exclusive from the application point of view.We also emphasize some security issues that are linked to the characteristics of these paradigms and vehicular networks,showing that they complement each other and share problems and limitations.As these networks still have many opportunities to grow in both concept and application,we finally discuss concepts and technologies that we believe are beneficial.Throughout this work,we emphasize the crucial role of these concepts for the well-being of humanity.展开更多
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of eme...Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.展开更多
To solve the problem that traditional pull based information service can’t meet the demand of long term users getting domain information timely and properly, an adaptive and active computing paradigm (AACP) for per...To solve the problem that traditional pull based information service can’t meet the demand of long term users getting domain information timely and properly, an adaptive and active computing paradigm (AACP) for personalized information service in heterogeneous environment is proposed to provide user centered, push based higsh quality information service timely in a proper way, the motivation of which is generalized as R 4 Service: the right information at the right time in the right way to the right person, upon which formalized algorithms framework of adaptive user profile management, incremental information retrieval, information filtering, and active delivery mechanism are discussed in details. The AACP paradigm serves users in a push based, event driven, interest related, adaptive and active information service mode, which is useful and promising for long term user to gain fresh information instead of polling from kinds of information sources.展开更多
The goal of this paper focuses on the development of dew computing, including its origins, research status, development status,and its impact on the transition history of Internet computing paradigms. By gathering and...The goal of this paper focuses on the development of dew computing, including its origins, research status, development status,and its impact on the transition history of Internet computing paradigms. By gathering and studying all the research papers related to dew computing that we are aware of, we found that these papers can be classified into three groups: dew computing early explorations, dew computing feature research, and dew computing application research. Commercial development in the dew computing area also has progressed fast recently; many dew computing products were developed and put into the market. To distinguish dew computing from other Internet computing paradigms and to reveal its essential features, we analyze the transition history of the Internet computing paradigms from information location and distribution aspects. Online impact and redundancy rate are two indices introduced to perform the analysis. The analysis reveals that dew computing is significantly different from other Internet computing paradigms.展开更多
基金supported by FCT through the LASIGE Research Unit(UIDB/00408/2020UIDP/00408/2020)+1 种基金the Brazilian National Council for Research and Development(CNPq)(#304315/2017-6#430274/2018-1)。
文摘Determining how to structure vehicular network environments can be done in various ways.Here,we highlight vehicle networks’evolution from vehicular ad-hoc networks(VANET)to the internet of vehicles(Io Vs),listing their benefits and limitations.We also highlight the reasons in adopting wireless technologies,in particular,IEEE 802.11 p and 5 G vehicle-toeverything,as well as the use of paradigms able to store and analyze a vast amount of data to produce intelligence and their applications in vehicular environments.We also correlate the use of each of these paradigms with the desire to meet existing intelligent transportation systems’requirements.The presentation of each paradigm is given from a historical and logical standpoint.In particular,vehicular fog computing improves on the deficiences of vehicular cloud computing,so both are not exclusive from the application point of view.We also emphasize some security issues that are linked to the characteristics of these paradigms and vehicular networks,showing that they complement each other and share problems and limitations.As these networks still have many opportunities to grow in both concept and application,we finally discuss concepts and technologies that we believe are beneficial.Throughout this work,we emphasize the crucial role of these concepts for the well-being of humanity.
文摘Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.
文摘To solve the problem that traditional pull based information service can’t meet the demand of long term users getting domain information timely and properly, an adaptive and active computing paradigm (AACP) for personalized information service in heterogeneous environment is proposed to provide user centered, push based higsh quality information service timely in a proper way, the motivation of which is generalized as R 4 Service: the right information at the right time in the right way to the right person, upon which formalized algorithms framework of adaptive user profile management, incremental information retrieval, information filtering, and active delivery mechanism are discussed in details. The AACP paradigm serves users in a push based, event driven, interest related, adaptive and active information service mode, which is useful and promising for long term user to gain fresh information instead of polling from kinds of information sources.
文摘The goal of this paper focuses on the development of dew computing, including its origins, research status, development status,and its impact on the transition history of Internet computing paradigms. By gathering and studying all the research papers related to dew computing that we are aware of, we found that these papers can be classified into three groups: dew computing early explorations, dew computing feature research, and dew computing application research. Commercial development in the dew computing area also has progressed fast recently; many dew computing products were developed and put into the market. To distinguish dew computing from other Internet computing paradigms and to reveal its essential features, we analyze the transition history of the Internet computing paradigms from information location and distribution aspects. Online impact and redundancy rate are two indices introduced to perform the analysis. The analysis reveals that dew computing is significantly different from other Internet computing paradigms.