A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeab...A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.展开更多
This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -...This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.展开更多
Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation ...Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors' models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method.展开更多
The Land-surface Process Model(LPM-ZD)has been successfully coupled with the regional climate model RegCM2 of NCAR.Then thus-obtained coupled model(CRegCM)has been applied to simulate the climate characteristics of he...The Land-surface Process Model(LPM-ZD)has been successfully coupled with the regional climate model RegCM2 of NCAR.Then thus-obtained coupled model(CRegCM)has been applied to simulate the climate characteristics of heavy rain in middle and East China for three months from May to July 1991.and compared with model output of NCAR-RegCM2 using BATS as land- surface process scheme,abbreviated as NRegCM.The results show that CRegCM has good ability and performance.CRegCM successfully simulates the extreme precipitation event and the simulations of CRegCM for surface temperature and some physical variables related to land surface process are more reasonable than those of NRegCM.展开更多
55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechan...55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.展开更多
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金supported by Chinese Ministry of Education (No.213022A)the National Natural Science Foundation of China (No.51574112)+4 种基金Henan Key Laboratory of Biogenic Traces and Sedimentary Minerals (No.OTMP1410)the Key Research Project of Higher Education Institution of Henan Province in 2015 (No.15A440001)the Doctor Funds of Henan Polytechnic University (No.B2015-05)the Basic and Advanced Technology Research Projects of Henan Province (No.162300410031)the Science and Technology Innovation Funds for Distinguished Young Scholar in Henan Province (No.164100510013)
文摘A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.
文摘This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.
基金co-supported by the National Natural Science Foundation of China (Nos. 61374145 and U1333131)
文摘Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors' models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method.
基金This work is supported by the National Key Research Project 96-908-02-04.
文摘The Land-surface Process Model(LPM-ZD)has been successfully coupled with the regional climate model RegCM2 of NCAR.Then thus-obtained coupled model(CRegCM)has been applied to simulate the climate characteristics of heavy rain in middle and East China for three months from May to July 1991.and compared with model output of NCAR-RegCM2 using BATS as land- surface process scheme,abbreviated as NRegCM.The results show that CRegCM has good ability and performance.CRegCM successfully simulates the extreme precipitation event and the simulations of CRegCM for surface temperature and some physical variables related to land surface process are more reasonable than those of NRegCM.
基金the fellowship of China Postdoctoral Science Foundation(Grant No.2020M672309)。
文摘55NiCrMoV7 hot-work die steel is mainly used to manufacture heavy forgings in the fields of aerospace and automobile.This study aims to clarify the effects of heat treatment on the microstructural evolution and mechanical properties of the steel,in order to find out an optimal heat treatment scheme to obtain an excellent balance of strength,ductility and toughness.The steel was quenched at temperature from 790℃ to 910℃ followed by tempering treatments of 100–650℃ for 5 h.The mechanical property tests were carried out by tensile,impact toughness and hardness.Optical microscope(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the austenite grains,lath martensite,carbides and fracture morphology.The results show that the quenching temperature mainly influences the austenite grain size and the volume fraction of undissolved carbides(UCs),while the tempering temperature mainly influences the size and morphology of the martensite with a body centered cubic(BCC)and the carbides with a face centered cubic(FCC).The mechanical properties of the steel,including yield and tensile strength,ductility,impact toughness and hardness,get an excellent balance at a quenching range of 850–870C.As the tempering temperature increases,the yield and tensile strength and hardness decrease,while the ductility and impact toughness increase.These variation trends can be further verified by fracture SEM observation and analysis.Combined with a macro-micro coupled finite element(MMFE)modeling technique,the cooling rate,microstructural evolution and yield strength of the steel were predicted and compared with the tested data.