期刊文献+
共找到630篇文章
< 1 2 32 >
每页显示 20 50 100
Remote Sensing Image Fusion Using Bidimensional Empirical Mode Decomposition and the Least Squares Theory 被引量:3
1
作者 Dengshan Huang Peng Yang +1 位作者 Jun Li Changhui Ma 《Journal of Computer and Communications》 2017年第12期35-48,共14页
Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial... Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial resolution. Many image fusion techniques have been developed to produce high resolution multispectral image. Considering panchromatic image and multispectral images contain the same spatial information with different accuracy, using the least square theory could estimate optimal spatial information. Compared with previous spatial details injection mode, this mode is more accurate and robust. In this paper, an image fusion method using Bidimensional Empirical Mode Decomposition (BEMD) and the least square theory is proposed to merge multispectral images and panchromatic image. After multi-spectral images were transformed from RGB space into IHS space, next I component and Panchromatic are decomposed by BEMD, then using the least squares theory to evaluate optimal spatial information and inject spatial information, finally completing fusion through inverse BEMD and inverse intensity-hue-saturation transform. Two data sets are used to evaluate the proposed fusion method, GF-1 images and QuickBird-2 images. The fusion images were evaluated visually and statistically. The evaluation results show the method proposed in this paper achieves the best performance compared with the conventional method. 展开更多
关键词 REMOTE SENSING Image fusion Bidimensional Empirical Mode decomposition The Least SQUARES THEORY
在线阅读 下载PDF
lp norm inverse spectral decomposition and its multi-sparsity fusion interpretation 被引量:2
2
作者 Li Sheng-Jun Wang Tie-Yi +3 位作者 Gao Jian-Hu Liu Bing-Yang Gui Jin-Yong Wang Hong-Qiu 《Applied Geophysics》 SCIE CSCD 2021年第4期569-578,595,共11页
Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method ... Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method is restrained by the window function,and hence,it mostly has low time–frequency focusing and resolution,thereby hampering the fi ne interpretation of seismic targets.To solve this problem,we investigated the sparse inverse spectral decomposition constrained by the lp norm(0<p≤1).Using a numerical model,we demonstrated the higher time–frequency resolution of this method and its capability for improving the seismic interpretation for thin layers.Moreover,given the actual underground geology that can be often complex,we further propose a p-norm constrained inverse spectral attribute interpretation method based on multiresolution time–frequency feature fusion.By comprehensively analyzing the time–frequency spectrum results constrained by the diff erent p-norms,we can obtain more refined interpretation results than those obtained by the traditional strategy,which incorporates a single norm constraint.Finally,the proposed strategy was applied to the processing and interpretation of actual three-dimensional seismic data for a study area covering about 230 km^(2) in western China.The results reveal that the surface water system in this area is characterized by stepwise convergence from a higher position in the north(a buried hill)toward the south and by the development of faults.We thus demonstrated that the proposed method has huge application potential in seismic interpretation. 展开更多
关键词 Spectral decomposition lp norm multiresolution time–frequency feature fusion seismic interpretation fi ne interpretation
在线阅读 下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
3
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
在线阅读 下载PDF
基于直觉模糊集熵测度和显著特征检测的古铜镜X光图像融合
4
作者 吴萌 张倩文 +2 位作者 孙增国 相建凯 郭歌 《光学精密工程》 北大核心 2025年第2期262-281,共20页
针对被锈蚀覆盖的古铜镜因镜缘与镜心区域厚度不均,单能X射线无法检测出完整的纹饰和病害信息的问题,本文提出一种直觉模糊集熵测度和显著特征检测的古铜镜X光图像融合方法。首先,引入有效引导滤波对高能量X光图像的纹饰结构做对比度增... 针对被锈蚀覆盖的古铜镜因镜缘与镜心区域厚度不均,单能X射线无法检测出完整的纹饰和病害信息的问题,本文提出一种直觉模糊集熵测度和显著特征检测的古铜镜X光图像融合方法。首先,引入有效引导滤波对高能量X光图像的纹饰结构做对比度增强。接着,采用联合双边滤波和结构-纹理分解策略设计三个尺度分解模型,以提取不同能量X光图像的能量层、残差层和细节层信息。其次,能量层通过l1-max规则得到融合后的能量图像,残差层利用直觉模糊集熵测度构造小尺度纹理特征融合模块,细节层结合扩展差分高斯与空间频率增强算子构建复合型显著特征检测策略。最后,将能量融合图、残差融合图和细节融合图相加得到最终融合结果。实验结果表明,本文方法的6种客观评价指标AG,SF,SD,SCD,NAB/F和SSIM相较于对比方法分别平均提高了23.59%,22.99%,16.12%,42.55%,17.07%,20.54%,融合结果可以有效保留古铜镜清晰的纹饰细节和病害裂隙的关键特征,在对比度和结构保持等方面都优于其他对比方法。 展开更多
关键词 图像融合 边缘保持滤波 三尺度分解 纹理提取 直觉模糊集熵测度 显著特征检测
在线阅读 下载PDF
机理-数据融合与残差修正的土石坝渗压预测模型研究
5
作者 黄昊冉 谷艳昌 +2 位作者 陈斯煜 王士军 黄海兵 《水利学报》 北大核心 2025年第3期398-410,共13页
机理模型预测评估土石坝渗流安全性态,物理意义明确、可解释性好,但是预测精度波动性较大。通过麻雀搜索算法(SSA)与径向基函数(RBF)对渗透系数进行反演并构建SSA-RBF渗压预测代理模型,得到模型预测值与残差序列;通过变分模态分解(VMD)... 机理模型预测评估土石坝渗流安全性态,物理意义明确、可解释性好,但是预测精度波动性较大。通过麻雀搜索算法(SSA)与径向基函数(RBF)对渗透系数进行反演并构建SSA-RBF渗压预测代理模型,得到模型预测值与残差序列;通过变分模态分解(VMD)将残差序列进行分解,并通过长短时记忆网络(LSTM)进行训练得到残差序列修正模型;将机理模型与数据驱动模型叠加构建得到SSA-RBF-VMD-LSTM融合模型,并实现对渗压水位准确预测。工程实例表明:本文提出的模型具有较高预测精度,相比于统计模型、LSTM模型和SSA-RBF-LSTM模型,其预测精度提高了89.64%、69.59%、60.45%,且在过程线出现较大幅度变动时,该模型仍能够及时给出准确的预测值,模型稳定性与外推能力较好,具有推广使用价值。 展开更多
关键词 土石坝 代理模型 麻雀搜索算法 变分模态分解 LSTM神经网络 机理-数据驱动融合
在线阅读 下载PDF
融合特征下的双流CNN的制动蠕动颤振评价
6
作者 李阳 靳畅 +1 位作者 李天舒 顾鼎元 《振动与冲击》 北大核心 2025年第1期134-142,189,共10页
针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方... 针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方法。一条支路的输入为经过变分模态分解提取的时间序列特征,另一条支路的输入为经过快速傅里叶变换提取的图像特征,将一维时序特征与高维图像特征融合,训练模型进行评分。该方法通过融合不同模态的信息,充分捕捉蠕动颤振的局部波形特征和空间纹理特征。结果表明,融合两种特征的评分模型的八分类准确率达87.13%,验证了特征融合方法在蠕动颤振评价上的有效性。 展开更多
关键词 卷积神经网络(CNN) 融合特征 变分模态分解(VMD) 蠕动颤振
在线阅读 下载PDF
TSEncoder:基于SAVMD和多源数据融合的故障分类
7
作者 季龙炳 周宇 钱巨 《计算机系统应用》 2025年第1期223-235,共13页
针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法S... 针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法SAVMD(signal adaptive variational mode decomposition),并构建加权峭度稀疏度指标WKS(weighted kurtosis sparsity)筛选出富含特征信息的IMF(intrinsic mode function)分量,以实现信号重构.其次,将不同位置传感器的多源数据进行融合,并以周期性采样得到的数据集作为模型的输入.最后,构建了一个时空故障分类模型来处理多源数据,通过改进的稀疏自注意力机制降低噪声干扰,并利用双编码器机制实现对时间步长和空间通道信息的有效处理.在3个公开的机械设备故障数据集上进行实验,平均准确率分别达到了99.1%、98.5%和99.4%.与其他故障分类方法相比表现更好,具有良好的自适应性和鲁棒性,为机械设备的故障诊断提供了一种可行的方法. 展开更多
关键词 信号自适应分解 多源数据融合 时空故障分类模型 故障分类
在线阅读 下载PDF
基于梯度残差和多尺度空洞卷积的多模态医学图像融合算法
8
作者 韦小牙 赵鑫 +1 位作者 费晓虎 王成军 《宁夏师范大学学报》 2025年第1期63-72,共10页
针对现有多模态医学图像融合算法提取图像浅层细粒度特征、深层多尺度特征不充分的问题,设计一种基于梯度残差稠密和多尺度空洞卷积的多模态医学图像融合算法.该算法由融合网络和分解网络组成.在融合网络的特征提取阶段设计梯度残差稠... 针对现有多模态医学图像融合算法提取图像浅层细粒度特征、深层多尺度特征不充分的问题,设计一种基于梯度残差稠密和多尺度空洞卷积的多模态医学图像融合算法.该算法由融合网络和分解网络组成.在融合网络的特征提取阶段设计梯度残差稠密模块和多尺度空洞卷积模块,梯度残差稠密模块用于提取浅层边缘细节信息和纹理特征信息,多尺度空洞卷积模块用于提取深层多尺度特征信息和全局语义信息;在分解网络中提出特征映射交换流模块,将融合图像尽可能分解成与源图像一致的分解图像,最大限度地减少信息损失.使用脑部MRI/CT数据集进行实验验证,结果表明,该算法在信息熵、空间频率和平均梯度等感知图像融合质量评价指标上,与4种高水平算法方法相比,分别提高8.21%、9.34%和11.02%,充分证明本文算法的有效性. 展开更多
关键词 多模态医学图像融合 MRI/CT数据集 融合网络 分解网络
在线阅读 下载PDF
基于深度学习的偏振图像融合方法
9
作者 孙红雨 李军 +1 位作者 袁博 周宇超 《红外技术》 北大核心 2025年第2期193-200,共8页
为改善阴暗复杂环境下图像质量,综合利用偏振图像的全局信息和纹理细节,提出多尺度特征提取与双重融合策略网络(scale feature extraction and dual fusion strategy, SFE-DFS-Nest),用于强度图像与偏振度图像的融合。首先,构建编码器,... 为改善阴暗复杂环境下图像质量,综合利用偏振图像的全局信息和纹理细节,提出多尺度特征提取与双重融合策略网络(scale feature extraction and dual fusion strategy, SFE-DFS-Nest),用于强度图像与偏振度图像的融合。首先,构建编码器,实现源图像多尺度特征提取。其次,浅层特征通过轻量化Transformer融合,深层特征通过残差网络融合。最后,构建解码器,用于融合特征重建。与现有图像融合网络相比,该网络针对不同尺度特征采用不同融合策略。结果表明,经过该网络融合后的阴暗复杂环境图像,主观视觉上图像观察舒适性较佳。并且通过选取方法的对比,融合后的图像在客观评价指标上,皆优于选取的方法。 展开更多
关键词 SFE-dfS-Nest网络 偏振图像 图像融合
在线阅读 下载PDF
基于参数优化变分模态分解和马田系统的工业缝纫机故障诊断方法
10
作者 周中华 刘祖斌 《高技术通讯》 北大核心 2025年第1期73-84,共12页
针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽... 针对工业缝纫机出厂质检的人耳听音传统方式准确率不高、耗时耗力的问题,提出了一种基于参数优化变分模态分解(variational mode decomposition,VMD)和马田系统(Mahalanobis-Taguchi system,MTS)的工业缝纫机故障诊断方法。首先,通过樽海鞘群算法(salp swarm algorithm,SSA)对变分模态分解的相关参数进行迭代寻优,并利用获得最优参数的VMD对工业缝纫机声信号进行分解得到不同中心频率的固有模态函数(intrinsic mode function,IMF);然后,分别对IMF分量进行多域特征融合,并且采用正常样本构建了MTS的基准空间,进一步利用了少量故障样本来验证和优化基准空间;最后,结合马氏距离的阈值实现了准确的故障识别分类。通过仿真信号的对比分析,证明了SSA-VMD算法分解信号的可行性和优越性;实验数据和实测数据的研究结果表明了所提出的故障诊断方法具有一定的实际应用价值。 展开更多
关键词 工业缝纫机 故障诊断 变分模态分解 马田系统 多域特征融合
在线阅读 下载PDF
用“电路分解法”计算DFS-Ⅴ仪器变形二进制T网
11
作者 袁子龙 孟昭和 《石油仪器》 1995年第3期171-176,共6页
利用戴维南定理和开路电压传输系数的概念,总结归纳出计算变形二进制T网的简单方法,如电路分解法,它将常规方法的复杂计算过程分解为两个简单的计算步骤:即计算两次开路电压,然后将其与开路电压传输系数相来即得到T网输出的权电压... 利用戴维南定理和开路电压传输系数的概念,总结归纳出计算变形二进制T网的简单方法,如电路分解法,它将常规方法的复杂计算过程分解为两个简单的计算步骤:即计算两次开路电压,然后将其与开路电压传输系数相来即得到T网输出的权电压。该方法计算过程简单、明了、容易掌握,适用于任意复杂线性网络的计算。 展开更多
关键词 二井制T网 电路分解法 地震仪 地震勘探 转换器
在线阅读 下载PDF
强噪声干扰下基于SVMD-FFCNN的深沟球轴承故障分类模型
12
作者 李友家 张忠伟 +2 位作者 焦宗豪 李新宇 秦贺 《机电工程》 北大核心 2025年第4期686-696,共11页
针对滚动轴承振动信号易受到外界噪声的干扰,导致故障特征信号微弱甚至被淹没,难以提取有效的故障特征的问题,提出了一种基于逐次变分模态分解与特征融合卷积神经网络(SVMD-FFCNN)的故障诊断方法。首先,利用SVMD对原始振动信号进行了模... 针对滚动轴承振动信号易受到外界噪声的干扰,导致故障特征信号微弱甚至被淹没,难以提取有效的故障特征的问题,提出了一种基于逐次变分模态分解与特征融合卷积神经网络(SVMD-FFCNN)的故障诊断方法。首先,利用SVMD对原始振动信号进行了模态分解,得到了固有模态函数(IMF)分量,并计算了皮尔森相关系数,筛选出相关程度大的分量,对信号进行了重构,完成了信号的降噪工作,并以降噪后的信号作为输入数据;然后,搭建了特征融合卷积神经网络模型(FFCNN),对卷积神经网络(CNN)提取到的浅层特征以及利用不同映射方法获取的深层特征成分进行了融合,提取了更具代表性的故障特征;最后,以SoftMax作为分类器,进行了深沟球轴承故障的分类任务,采用SKF6203深沟球轴承,并利用搭建的轴承故障模拟实验台采集了深沟球轴承振动数据,对SVMD-FFCNN方法进行了实验验证,并将其与其他方法进行了对比分析。研究结果表明:SVMD方法能够有效降低噪声的干扰,相较于未经过SVMD降噪处理的信号,实测实验信号信噪比提升了116.22%,均方根误差减低了56.10%;SVMD-FFCNN方法在噪声环境下的平均准确精度达到了99.37%,且三个转速工况下的诊断精度均达到了99%以上。上述结果表明,该方法在噪声环境下具有更优越的故障诊断性能。 展开更多
关键词 滚动轴承 强噪声干扰 智能故障诊断 逐次变分模态分解 特征融合卷积神经网络 SoftMax分类器
在线阅读 下载PDF
变电站低照度场景红外可见光图像融合
13
作者 赵杰 陈嘉晋 《电气技术》 2025年第3期22-29,共8页
低照度环境会导致变电站采集图像出现视觉质量低、细节损失、对比度低等问题,影响后续设备检测与监控等工作,因此本文提出一种基于低照度图像增强和非下采样轮廓波变换(NSCT)与离散余弦变换(DCT)技术的图像融合方法。首先,基于伽马参数... 低照度环境会导致变电站采集图像出现视觉质量低、细节损失、对比度低等问题,影响后续设备检测与监控等工作,因此本文提出一种基于低照度图像增强和非下采样轮廓波变换(NSCT)与离散余弦变换(DCT)技术的图像融合方法。首先,基于伽马参数对可见光图像进行自适应图像调节,增强可视度;然后,由NSCT将图像分解为高低频系数,对高频系数采用Sobel算子进行边缘信息提取,对低频系数采用改进DCT-离散傅里叶变换(DFT)进行分解整合,再对分解的振幅频谱与相位频谱分别采用对比度增强加权与基于奇异值分解(SVD)的局部能量最优规则进行融合;最后,由NSCT反变换得到融合图像。利用三组变电站常见设备图像,将所提方法与其他算法进行对比,结果表明本文所提方法的平均梯度、信息熵、互信息等指标更优。 展开更多
关键词 图像融合 低照度图像 非下采样轮廓波变换(NSCT) 离散余弦变换(DCT) 奇异值分解(SVD)
在线阅读 下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
14
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) Data fusion (df) MULTI-SENSOR
在线阅读 下载PDF
χ~2检验方法和DF方法抗距离拖引干扰的性能比较 被引量:1
15
作者 宋军 王国宏 《舰船电子工程》 2004年第4期106-110,共5页
利用MonteCarlo方法 ,对 χ2 检验方法和分解融合 (DF)方法在有虚警测量的环境下抗距离拖引干扰的性能进行了分析和比较。研究表明 ,在既有虚警测量又有距离后拖 (RGPO)干扰的情况下 ,采用DF方法可以有效地抗距离后拖欺骗干扰 ,实现对... 利用MonteCarlo方法 ,对 χ2 检验方法和分解融合 (DF)方法在有虚警测量的环境下抗距离拖引干扰的性能进行了分析和比较。研究表明 ,在既有虚警测量又有距离后拖 (RGPO)干扰的情况下 ,采用DF方法可以有效地抗距离后拖欺骗干扰 ,实现对目标的跟踪 ,相对于 χ2 展开更多
关键词 分解融合方法 X^2检验 距离拖引干扰 性能分析
在线阅读 下载PDF
Classification Fusion in Wireless Sensor Networks 被引量:3
16
作者 LIU Chun-Ting HUO Hong +2 位作者 FANG Tao LI De-Ren SHEN Xiao 《自动化学报》 EI CSCD 北大核心 2006年第6期947-955,共9页
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl... In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved. 展开更多
关键词 Wireless sensor networks classification fusion wavelet decomposition weighted k-nearest-neighbor Dempster-Shafer theory
在线阅读 下载PDF
EMD Based Multi-scale Model for High Resolution Image Fusion 被引量:5
17
作者 WANG Jian ZHANG Jixian LIU Zhengjun 《Geo-Spatial Information Science》 2008年第1期31-37,共7页
High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue ... High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience. 展开更多
关键词 image fusion experimental model decomposition quantitatively evaluation
在线阅读 下载PDF
Multiresolution image fusion scheme based on fuzzy region feature 被引量:2
18
作者 刘刚 敬忠良 孙韶媛 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期117-122,共6页
This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important reg... This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region’s degree of membership in the multiresolution representation, and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods. 展开更多
关键词 Image fusion Image multiscale decomposition Discrete wavelet frame
在线阅读 下载PDF
A New Multi-sensor Data Fusion Algorithm Based on EMD-MMSE 被引量:2
19
作者 张琦 阙沛文 +1 位作者 陈天璐 黄晶 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期153-158,共6页
A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean squ... A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly. 展开更多
关键词 data fusion empirical mode decomposition (EMD) minimum mean square error (MMSE) multisensor system
在线阅读 下载PDF
SAR Image Change Detection Algorithm Based on Different Empirical Mode Decomposition 被引量:1
20
作者 Shiqi Huang Zhigang Liu +1 位作者 Zhe Liu Liping Wang 《Journal of Computer and Communications》 2017年第8期9-20,共12页
Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadva... Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadvantages. Synthetic aperture radar (SAR) imaging is an important remote sensing technique to obtain the change information, and SAR image data belongs to non-stationary signal. So EMD is very suitable for SAR image processing. There are two kinds of typical EMD theories, which are the ensemble empirical mode decomposition (EEMD) and bidimensional empirical mode decomposition (BEMD). Based on the deep study of the two methods, this paper proposed a new SAR image change detection algorithm, which is called the FCD-EMD algorithm, i.e. fusion change detection based on EMD. So FCD-EMD algorithm can obtain more accurate information, which not only includes the directional information obtained by EEMD, but also can contain the spatial information got by BEMD. The main contribution of the FCD-EMD algorithm is to fuse the detail information in different directions, so that the results obtained are more accurate than the individual method. On the other hand, it can reduce the influence of speckle noise in SAR images by feature selections. The actual SAR image data verify the algorithm proposed in this paper and good experimental results are obtained, which show that the new method is feasible. 展开更多
关键词 Empirical MODE decomposition SAR IMAGE CHANGE Detection fusion
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部