Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial...Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial resolution. Many image fusion techniques have been developed to produce high resolution multispectral image. Considering panchromatic image and multispectral images contain the same spatial information with different accuracy, using the least square theory could estimate optimal spatial information. Compared with previous spatial details injection mode, this mode is more accurate and robust. In this paper, an image fusion method using Bidimensional Empirical Mode Decomposition (BEMD) and the least square theory is proposed to merge multispectral images and panchromatic image. After multi-spectral images were transformed from RGB space into IHS space, next I component and Panchromatic are decomposed by BEMD, then using the least squares theory to evaluate optimal spatial information and inject spatial information, finally completing fusion through inverse BEMD and inverse intensity-hue-saturation transform. Two data sets are used to evaluate the proposed fusion method, GF-1 images and QuickBird-2 images. The fusion images were evaluated visually and statistically. The evaluation results show the method proposed in this paper achieves the best performance compared with the conventional method.展开更多
Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method ...Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method is restrained by the window function,and hence,it mostly has low time–frequency focusing and resolution,thereby hampering the fi ne interpretation of seismic targets.To solve this problem,we investigated the sparse inverse spectral decomposition constrained by the lp norm(0<p≤1).Using a numerical model,we demonstrated the higher time–frequency resolution of this method and its capability for improving the seismic interpretation for thin layers.Moreover,given the actual underground geology that can be often complex,we further propose a p-norm constrained inverse spectral attribute interpretation method based on multiresolution time–frequency feature fusion.By comprehensively analyzing the time–frequency spectrum results constrained by the diff erent p-norms,we can obtain more refined interpretation results than those obtained by the traditional strategy,which incorporates a single norm constraint.Finally,the proposed strategy was applied to the processing and interpretation of actual three-dimensional seismic data for a study area covering about 230 km^(2) in western China.The results reveal that the surface water system in this area is characterized by stepwise convergence from a higher position in the north(a buried hill)toward the south and by the development of faults.We thus demonstrated that the proposed method has huge application potential in seismic interpretation.展开更多
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear...To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.展开更多
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue ...High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience.展开更多
This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important reg...This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region’s degree of membership in the multiresolution representation, and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods.展开更多
A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean squ...A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly.展开更多
Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadva...Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadvantages. Synthetic aperture radar (SAR) imaging is an important remote sensing technique to obtain the change information, and SAR image data belongs to non-stationary signal. So EMD is very suitable for SAR image processing. There are two kinds of typical EMD theories, which are the ensemble empirical mode decomposition (EEMD) and bidimensional empirical mode decomposition (BEMD). Based on the deep study of the two methods, this paper proposed a new SAR image change detection algorithm, which is called the FCD-EMD algorithm, i.e. fusion change detection based on EMD. So FCD-EMD algorithm can obtain more accurate information, which not only includes the directional information obtained by EEMD, but also can contain the spatial information got by BEMD. The main contribution of the FCD-EMD algorithm is to fuse the detail information in different directions, so that the results obtained are more accurate than the individual method. On the other hand, it can reduce the influence of speckle noise in SAR images by feature selections. The actual SAR image data verify the algorithm proposed in this paper and good experimental results are obtained, which show that the new method is feasible.展开更多
文摘Due to the data acquired by most optical earth observation satellite such as IKONOS, QuickBird-2 and GF-1 consist of a panchromatic image with high spatial resolution and multiple multispectral images with low spatial resolution. Many image fusion techniques have been developed to produce high resolution multispectral image. Considering panchromatic image and multispectral images contain the same spatial information with different accuracy, using the least square theory could estimate optimal spatial information. Compared with previous spatial details injection mode, this mode is more accurate and robust. In this paper, an image fusion method using Bidimensional Empirical Mode Decomposition (BEMD) and the least square theory is proposed to merge multispectral images and panchromatic image. After multi-spectral images were transformed from RGB space into IHS space, next I component and Panchromatic are decomposed by BEMD, then using the least squares theory to evaluate optimal spatial information and inject spatial information, finally completing fusion through inverse BEMD and inverse intensity-hue-saturation transform. Two data sets are used to evaluate the proposed fusion method, GF-1 images and QuickBird-2 images. The fusion images were evaluated visually and statistically. The evaluation results show the method proposed in this paper achieves the best performance compared with the conventional method.
基金supported by National Natural Science Foundation of China (Grant No. 41974140)the PetroChina Prospective,Basic,and Strategic Technology Research Project (No. 2021DJ0606)
文摘Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method is restrained by the window function,and hence,it mostly has low time–frequency focusing and resolution,thereby hampering the fi ne interpretation of seismic targets.To solve this problem,we investigated the sparse inverse spectral decomposition constrained by the lp norm(0<p≤1).Using a numerical model,we demonstrated the higher time–frequency resolution of this method and its capability for improving the seismic interpretation for thin layers.Moreover,given the actual underground geology that can be often complex,we further propose a p-norm constrained inverse spectral attribute interpretation method based on multiresolution time–frequency feature fusion.By comprehensively analyzing the time–frequency spectrum results constrained by the diff erent p-norms,we can obtain more refined interpretation results than those obtained by the traditional strategy,which incorporates a single norm constraint.Finally,the proposed strategy was applied to the processing and interpretation of actual three-dimensional seismic data for a study area covering about 230 km^(2) in western China.The results reveal that the surface water system in this area is characterized by stepwise convergence from a higher position in the north(a buried hill)toward the south and by the development of faults.We thus demonstrated that the proposed method has huge application potential in seismic interpretation.
基金support by the Aerospace Research Project of China under Grant No.020202。
文摘To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
文摘High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience.
基金Project supported by the National Natural Science Foundation of China (No. 60375008), China Aviation Science Foundation (No.02D57003), China Ph.D Discipline Special Foundation (No.20020248029), and Shanghai Key Scientific Project (No.02DZ15001), China
文摘This paper proposes a novel region based image fusion scheme based on multiresolution analysis. The low frequency band of the image multiresolution representation is segmented into important regions, sub-important regions and background regions. Each feature of the regions is used to determine the region’s degree of membership in the multiresolution representation, and then to achieve multiresolution representation of the fusion result. The final image fusion result can be obtained by using the inverse multiresolution transform. Experiments showed that the proposed image fusion method can have better performance than existing image fusion methods.
基金The National High Technology Research and Development Program of China(863Program)(No.2001AA602021)
文摘A new multi-sensor data fusion algorithm based on EMD-MMSE was proposed.Empirical mode decomposition(EMD)is used to extract the noise of every time series for estimating the variance of the noise.Then minimum mean square error(MMSE)estimator is used to calculate the weights of the corresponding series.Finally,the fused signal is the weighted addition of all these series.The experiments in lab testified the efficiency of this method.In addition,the comparison in fusion time and fusion results with existing fusion method based on wavelet and average technique shows the advantage of this method greatly.
文摘Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadvantages. Synthetic aperture radar (SAR) imaging is an important remote sensing technique to obtain the change information, and SAR image data belongs to non-stationary signal. So EMD is very suitable for SAR image processing. There are two kinds of typical EMD theories, which are the ensemble empirical mode decomposition (EEMD) and bidimensional empirical mode decomposition (BEMD). Based on the deep study of the two methods, this paper proposed a new SAR image change detection algorithm, which is called the FCD-EMD algorithm, i.e. fusion change detection based on EMD. So FCD-EMD algorithm can obtain more accurate information, which not only includes the directional information obtained by EEMD, but also can contain the spatial information got by BEMD. The main contribution of the FCD-EMD algorithm is to fuse the detail information in different directions, so that the results obtained are more accurate than the individual method. On the other hand, it can reduce the influence of speckle noise in SAR images by feature selections. The actual SAR image data verify the algorithm proposed in this paper and good experimental results are obtained, which show that the new method is feasible.