期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
1
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(dbn)
在线阅读 下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:72
2
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 dbn(deep belief nets) 神经网络 关系抽取 深层网络 字特征
在线阅读 下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法
3
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
在线阅读 下载PDF
结合遗传算法的RF-DBN入侵检测方法
4
作者 任俊玲 诸于铭 《中国科技论文》 CAS 2024年第8期937-944,共8页
针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行... 针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行过采样,减少数据集的不平衡度;然后使用随机森林算法实现正异常数据分类,筛选出异常数据;最后采用经GA优化的DBN网络对异常数据进行进一步分类。使用网络安全数据集CICIDS2017进行验证,该方法的准确率达到了99.85%,而且少数类样本的识别精度也有明显提高。 展开更多
关键词 随机森林 遗传算法 BorderlineSMOTE 深度信念网络 数据不平衡 入侵检测
在线阅读 下载PDF
A Real-Time and Ubiquitous Network Attack Detection Based on Deep Belief Network and Support Vector Machine 被引量:10
5
作者 Hao Zhang Yongdan Li +2 位作者 Zhihan Lv Arun Kumar Sangaiah Tao Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期790-799,共10页
In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network... In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions. 展开更多
关键词 deep belief network(dbn) flow calculation frequent pattern INTRUSION detection SLIDING WINDOW support vector machine(SVM)
在线阅读 下载PDF
Optimizing Deep Learning Parameters Using Genetic Algorithm for Object Recognition and Robot Grasping 被引量:2
6
作者 Delowar Hossain Genci Capi Mitsuru Jindai 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期11-15,共5页
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We... The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks. 展开更多
关键词 deep learning(DL) deep belief neural network(dbnN) genetic algorithm(GA) object recognition robot grasping
在线阅读 下载PDF
一种基于SSA-DBN的室内可见光指纹定位算法 被引量:1
7
作者 王鹏云 邵建华 +3 位作者 王宗生 程悦 杨薇 杜聪 《激光杂志》 CAS 北大核心 2024年第1期159-165,共7页
室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线... 室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线指纹库;其次,利用麻雀搜索算法较好的全局探索和局部开发的能力,对深度置信网络的初始权阈值进行优化,建立网络训练模型,对待定位目标的位置进行预测,避免了DBN陷入局部最优以及收敛速度较慢的问题。最后,利用已建立的离线指纹库数据,计算定位误差并分析。在4 m×4 m×2.5 m的空间中进行实验,结果表明:文中算法的平均定位误差为3.51 cm,定位误差在6 cm以内的概率为89.9%,与DBN定位算法相比,平均定位误差下降了约22.5%。 展开更多
关键词 可见光 室内定位 麻雀搜索算法 深度置信网络
在线阅读 下载PDF
基于CS-DBN的锂电池剩余寿命预测 被引量:6
8
作者 梁佳佳 何晓霞 肖浩逸 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期251-259,共9页
为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念... 为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念网络模型中隐藏层的参数,通过寻优,建立最优的深度信念网络预测模型。最后,使用马里兰大学所收集的电池数据(CALCE)进行实验,结果表明:所提出的CS-DBN模型的拟合优度高达98%,且与其他模型的预测结果进行对比,具有更小的误差,验证了所提方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 随机森林 深度信念网络 布谷鸟算法 健康因子
在线阅读 下载PDF
基于DBN的液压泵劣化程度评估方法研究
9
作者 李振宝 伊明 +2 位作者 李富强 张磊 姜万录 《机床与液压》 北大核心 2024年第14期219-226,共8页
针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括... 针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括预加重、分帧和加窗等;对预处理后的信号进行快速傅里叶变换(FFT),得到其频率谱和功率谱,然后让其通过Mel滤波器组,得到信号的对数能量;最后对对数能量进行离散余弦变换,得到信号的倒谱系数和一阶差分系数,并以此构成特征向量。基于DBN方法搭建深度学习模型,对特征向量进行学习,将测试样本导入深度学习模型,对中心弹簧失效程度进行评估,并将倒谱系数和一阶差分系数的识别结果进行对比。结果表明:当选择倒谱系数为特征向量时,具有较高的识别精度,能够有效识别轴向柱塞泵中心弹簧的性能劣化程度。 展开更多
关键词 梅尔频率倒谱系数 深度信念神经网络 轴向柱塞泵 劣化评估
在线阅读 下载PDF
Deep Belief Network for Lung Nodule Segmentation and Cancer Detection
10
作者 Sindhuja Manickavasagam Poonkuzhali Sugumaran 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期135-151,共17页
Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ... Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness. 展开更多
关键词 Chicken-sine cosine algorithm deep belief network lung cancer Subject classification codes artificial intelligence machine learning segmentation
在线阅读 下载PDF
基于PSO-DBN的配电网可靠性分析研究 被引量:1
11
作者 张俊成 崔志威 +1 位作者 陶毅刚 黎敏 《自动化仪表》 CAS 2024年第5期112-117,共6页
为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强... 为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强模型,从而改善电力数据缺失和不平衡等问题。其次,建立了结合深度信念网络(DBN)和粒子群优化(PSO)模型的优化学习网络,从而得到更准确的配电网可靠性分析结果。以IEEE39电力节点系统为基础,对所提模型进行仿真与分析。仿真结果表明,所提模型性能最优。该研究能够为配电网可靠性评估、管理及稳定运行提供借鉴。 展开更多
关键词 电力系统 配电网 可靠性评估 深度学习 深度信念网络 粒子群优化 仿真分析
在线阅读 下载PDF
基于WPT-ARO-DBN/WPT-EPO-DBN模型的月含沙量多步预测 被引量:2
12
作者 高雪梅 崔东文 《人民珠江》 2024年第3期69-78,共10页
准确的含沙量多步预测对于区域水土流失治理、防洪减灾等具有重要意义。为提高含沙量多步预测精度,改进深度信念网络(DBN)的预测性能,基于小波包变换(WPT),分别提出人工兔优化(ARO)算法、鹰栖息优化(EPO)算法与DBN组合的月含沙量多步预... 准确的含沙量多步预测对于区域水土流失治理、防洪减灾等具有重要意义。为提高含沙量多步预测精度,改进深度信念网络(DBN)的预测性能,基于小波包变换(WPT),分别提出人工兔优化(ARO)算法、鹰栖息优化(EPO)算法与DBN组合的月含沙量多步预测模型,通过云南省龙潭站月含沙量时序数据对模型进行验证。首先利用WPT对实例月含沙量时序数据进行3层分解处理,得到8个更具规律的子序列分量;其次介绍ARO、EPO算法原理,利用ARO、EPO对DBN隐藏层神经元数等超参数进行寻优,建立WPT-ARO-DBN、WPT-EPO-DBN预测模型,并构建WPT-PSO(粒子群算法)-DBN、WPT-DBN作对比分析模型;最后利用4种模型对各子序列分量进行预测,将预测值叠加得到最终月含沙量多步预测结果。结果表明:(1)WPT-ARO-DBN、WPT-EPO-DBN模型对实例超前1步—超前4步月含沙量具有满意的预测效果,对超前5步具有较好的预测结果,对超前6步、超前7步的预测效果一般,对超前8步的预测精度较差,已不能满足预测精度需求;(2)WPT-ARO-DBN、WPT-EPO-DBN模型的多步预测效果要优于WPT-PSO-DBN模型,远优于WPT-DBN模型,具有更高的预测精度、更好的泛化能力和更大的预测步长;(3)ARO、EPO能有效优化DBN超参数,提高DBN预测性能,优化效果优于PSO,WPT-ARO-DBN、WPT-EPO-DBN模型能充分发挥WPT、新型群体智能算法和DBN网络优势,提高月含沙量多步预测精度,且预测精度随着预测步数的增加而降低。 展开更多
关键词 月含沙量预测 深度信念网络 人工兔优化算法 鹰栖息优化算法 小波包变换 组合模型
在线阅读 下载PDF
基于MIC与IAOA-DBN的充油电缆终端故障诊断方法
13
作者 连鸿松 杨静雨 李长云 《高电压技术》 CSCD 北大核心 2024年第12期5259-5268,共10页
高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(i... 高压充油电缆终端的可靠运行是电缆线路稳定运行的前提,但传统充油电缆终端故障诊断模型存在效率低、可靠性差等问题。为准确判断充油电缆终端故障,提出一种最大互信息系数(maximal information coefficient,MIC)结合改进阿基米德算法(improved Archimedes optimization algorithm,IAOA)优化深度置信网络(deep belief network,DBN)的充油电缆终端故障诊断方法。首先,采用MIC理论对电缆终端用硅油中溶解气体浓度的特征量进行降维处理并提取特征量;其次,将优选的特征量作为DBN网络模型的输入,并针对DBN网络超参数选取困难的缺点,提出采用IAOA优化DBN网络模型的超参数;再者,针对AOA算法容易陷入局部最优和搜索能力差等不足,引入多种改进策略优化AOA的方法提高AOA的寻优能力。最后,通过搭建充油电缆终端故障模拟实验平台,收集充油电缆终端故障样本数据并创建类别样本标签,验证了该模型的可行性。实例表明,所提出的诊断方法可以较好地完成故障诊断,测试集的准确率为98.33%。与传统故障诊断模型相比,该方法稳定性好、识别精度高,可为保障高压充油电缆终端的可靠运行提供理论基础。 展开更多
关键词 充油电缆终端 故障诊断 最大互信息系数 改进阿基米德优化算法 深度置信网络
在线阅读 下载PDF
一种基于机器学习的井间水驱优势通道识别方法
14
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
基于DBN模型的遥感图像分类 被引量:73
15
作者 吕启 窦勇 +2 位作者 牛新 徐佳庆 夏飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1911-1918,共8页
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地... 遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果. 展开更多
关键词 遥感图像 合成孔径雷达 地物分类 深度学习 受限玻尔兹曼机 深度信念网络
在线阅读 下载PDF
基于DBN的车载激光点云路侧多目标提取 被引量:19
16
作者 罗海峰 方莉娜 +1 位作者 陈崇成 黄志文 《测绘学报》 EI CSCD 北大核心 2018年第2期234-246,共13页
提出一种基于深度信念网络(DBN)的车载激光点云路侧多目标提取方法。首先通过预处理对原始数据进行分段,并将地面和建筑物点云与路侧目标进行分离;然后利用连通分支聚类分析算法进行路侧点云聚类,并采用基于体素的归一化分割方法分割重... 提出一种基于深度信念网络(DBN)的车载激光点云路侧多目标提取方法。首先通过预处理对原始数据进行分段,并将地面和建筑物点云与路侧目标进行分离;然后利用连通分支聚类分析算法进行路侧点云聚类,并采用基于体素的归一化分割方法分割重叠点云,从而生成独立目标点云;在此基础上,生成基于多方向目标对象的二值图像并展开成二值向量作为独立目标点云的描述特征;最后构建并训练DBN,利用训练好的DBN提取行道树、车辆及杆状目标等3类路侧目标。试验采用两份不同城市道路场景的点云数据,行道树、车辆及杆状目标提取结果的准确率分别达97.31%、97.79%、92.78%,召回率分别达98.30%、98.75%和96.77%,精度分别达95.70%、93.81%和90.00%,F1值分别达97.80%、96.81%和94.73%。试验结果验证了本文的有效性。 展开更多
关键词 车载激光点云 深度信念网络 深度学习 点云分割 路侧目标提取
在线阅读 下载PDF
基于层次稀疏DBN的瓶颈特征提取方法 被引量:10
17
作者 王一 杨俊安 +1 位作者 刘辉 柳林 《模式识别与人工智能》 EI CSCD 北大核心 2015年第2期173-180,共8页
针对现有语音特征无法有效利用长时段语音和监督性类别信息,及现有瓶颈特征提取方法耗时过长等缺陷,提出基于层次结构稀疏深度可信神经网络的瓶颈特征提取方法.该方法将重叠组套索作为深度可信神经网络目标函数的稀疏正则项使用,从而构... 针对现有语音特征无法有效利用长时段语音和监督性类别信息,及现有瓶颈特征提取方法耗时过长等缺陷,提出基于层次结构稀疏深度可信神经网络的瓶颈特征提取方法.该方法将重叠组套索作为深度可信神经网络目标函数的稀疏正则项使用,从而构建训练速度更快的稀疏深度可信神经网络.然后利用层次结构的网络架构方式,将两个稀疏深度可信神经网络串联后使用,进一步增强瓶颈特征的判决能力.文中将此瓶颈特征应用于音素识别中,实验表明该特征的有效性. 展开更多
关键词 音素识别 深度可信神经网络(dbn) 重叠组套索 层次结构
在线阅读 下载PDF
基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法 被引量:32
18
作者 王艳 李伟 +2 位作者 赵洪山 张嘉琳 申宗旺 《电力系统保护与控制》 EI CSCD 北大核心 2023年第4期32-42,共11页
为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用... 为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用具有较强学习能力的极限学习机(extreme learning machine, ELM)替换传统DBN分类模型中的Softmax分类器,深入分析特征值与故障类型之间的关联性,提高模型的收敛速度。然后,利用麻雀搜索算法(sparrow search algorithm, SSA)优化ELM模型的输入权值和隐藏层节点偏置,以提高模型诊断结果的准确率和稳定性。最后,选用准确率、查全率、查准率和收敛速度对优化前后的模型进行性能评估。最终实验结果表明:所提出的DBN-SSAELM变压器故障诊断方法,故障诊断准确率高、泛化能力强、稳定性好,平均准确率达到96.50%,适用于变压器故障诊断。 展开更多
关键词 变压器 故障诊断 深度置信网络 极限学习机 麻雀搜索算法
在线阅读 下载PDF
基于DBN-XGBDT的入侵检测模型研究 被引量:8
19
作者 陈虹 王闰婷 +3 位作者 肖成龙 郭鹏飞 黄洁 陈红霖 《计算机工程与应用》 CSCD 北大核心 2020年第22期83-91,共9页
在分布均匀的海量数据情况下,现有的入侵检测模型均具备良好的检测性能。但网络中产生的海量入侵数据的分布通常具有不均衡特点,而大多数检测模型针对罕见攻击类型的检测率低。针对上述问题,提出了一种深度信念网络(Deep Belief Network... 在分布均匀的海量数据情况下,现有的入侵检测模型均具备良好的检测性能。但网络中产生的海量入侵数据的分布通常具有不均衡特点,而大多数检测模型针对罕见攻击类型的检测率低。针对上述问题,提出了一种深度信念网络(Deep Belief Networks,DBN)融合极限梯度提升(eXtreme Gradient Boosting,XGBoost)基于决策树算法(Decision Tree,DT)的入侵检测模型(DBN-XGBDT)。该模型将预处理后的数据集输入深度信念网络中,实现对入侵检测数据的降维处理,将得到的特征数据根据攻击类别任两类为一组,通过XGBoost算法逐一构建梯度提升树并细化为二分类;最后运用控制变量法和XGBoost内置的交叉验证进行调参,择优调整模型参数,对未知网络攻击实现有效检测。基于NSL-KDD数据集对DBN-XGBDT模型与XGBoost、DBN-BP、DBN-MSVM等优越模型进行了检测实验。实验结果表明,DBN-XGBDT模型较上述3个单一、混合分类模型的正确率分别提升2.07个百分点、1.14个百分点,对U2R的检测率提升至75.37%,平均误报率降至56.23%,为入侵检测处理不均衡数据且提高对罕见攻击的检测性能提供了新方法。 展开更多
关键词 不均衡数据 入侵检测 深度信念网络(dbn) 极限梯度提升(XGBoost)
在线阅读 下载PDF
基于DBN-ELM的聚丙烯熔融指数的软测量 被引量:11
20
作者 王宇红 狄克松 +2 位作者 张姗 尚超 黄德先 《化工学报》 EI CAS CSCD 北大核心 2016年第12期5163-5168,共6页
针对聚丙烯熔融指数软测量中预测精度不高的缺点,将基于深度置信网络-极限学习机(DBN-ELM)的软测量方法应用到熔融指数的软测量中。与传统深度置信网络(DBN)不同的是,该方法将极限学习机(ELM)算法运用到深度置信网络的训练中。首先用深... 针对聚丙烯熔融指数软测量中预测精度不高的缺点,将基于深度置信网络-极限学习机(DBN-ELM)的软测量方法应用到熔融指数的软测量中。与传统深度置信网络(DBN)不同的是,该方法将极限学习机(ELM)算法运用到深度置信网络的训练中。首先用深度置信网络对原始数据进行数值分析来提取特征,然后将提取的特征输入到极限学习机中进行训练,得到软测量模型。实验验证表明,与支持向量机和单纯的深度置信网络模型相比,该方法具有更高的测量精度。 展开更多
关键词 深度置信网络 算法 极限学习机 数值分析 特征提取 实验验证
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部