期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios
1
作者 Lyuchao Liao Hankun Xiao +3 位作者 Pengqi Xing Zhenhua Gan Youpeng He Jiajun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期557-576,共20页
Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonom... Autonomous driving has witnessed rapid advancement;however,ensuring safe and efficient driving in intricate scenarios remains a critical challenge.In particular,traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles,susceptibility to traffic flow bottlenecks,and imperfect data in perceiving environmental information,rendering them a vital issue in the practical application of autonomous driving.To address the traffic challenges,this work focused on complex roundabouts with multi-lane and proposed a Perception EnhancedDeepDeterministic Policy Gradient(PE-DDPG)for AutonomousDriving in the Roundabouts.Specifically,themodel incorporates an enhanced variational autoencoder featuring an integrated spatial attention mechanism alongside the Deep Deterministic Policy Gradient framework,enhancing the vehicle’s capability to comprehend complex roundabout environments and make decisions.Furthermore,the PE-DDPG model combines a dynamic path optimization strategy for roundabout scenarios,effectively mitigating traffic bottlenecks and augmenting throughput efficiency.Extensive experiments were conducted with the collaborative simulation platform of CARLA and SUMO,and the experimental results show that the proposed PE-DDPG outperforms the baseline methods in terms of the convergence capacity of the training process,the smoothness of driving and the traffic efficiency with diverse traffic flow patterns and penetration rates of autonomous vehicles(AVs).Generally,the proposed PE-DDPGmodel could be employed for autonomous driving in complex scenarios with imperfect data. 展开更多
关键词 Autonomous driving traffic roundabouts deep deterministic policy gradient spatial attention mechanisms
在线阅读 下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
2
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
在线阅读 下载PDF
Full-model-free Adaptive Graph Deep Deterministic Policy Gradient Model for Multi-terminal Soft Open Point Voltage Control in Distribution Systems
3
作者 Huayi Wu Zhao Xu +1 位作者 Minghao Wang Youwei Jia 《Journal of Modern Power Systems and Clean Energy》 2024年第6期1893-1904,共12页
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution systems.To prevent voltage violations,multi-terminal soft open points(M-s... High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution systems.To prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol flexibility.However,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of M-SOPs.To address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage control.Specifically,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ability.Then,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free control.Furthermore,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate model.Numerical tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel. 展开更多
关键词 Soft open point graph attention graph convolutional network reinforcement learning voltage control distribution system deep deterministic policy gradient
原文传递
Real-Time Implementation of Quadrotor UAV Control System Based on a Deep Reinforcement Learning Approach
4
作者 Taha Yacine Trad Kheireddine Choutri +4 位作者 Mohand Lagha Souham Meshoul Fouad Khenfri Raouf Fareh Hadil Shaiba 《Computers, Materials & Continua》 SCIE EI 2024年第12期4757-4786,共30页
The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for cont... The popularity of quadrotor Unmanned Aerial Vehicles(UAVs)stems from their simple propulsion systems and structural design.However,their complex and nonlinear dynamic behavior presents a significant challenge for control,necessitating sophisticated algorithms to ensure stability and accuracy in flight.Various strategies have been explored by researchers and control engineers,with learning-based methods like reinforcement learning,deep learning,and neural networks showing promise in enhancing the robustness and adaptability of quadrotor control systems.This paper investigates a Reinforcement Learning(RL)approach for both high and low-level quadrotor control systems,focusing on attitude stabilization and position tracking tasks.A novel reward function and actor-critic network structures are designed to stimulate high-order observable states,improving the agent’s understanding of the quadrotor’s dynamics and environmental constraints.To address the challenge of RL hyper-parameter tuning,a new framework is introduced that combines Simulated Annealing(SA)with a reinforcement learning algorithm,specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient(SA-TD3).This approach is evaluated for path-following and stabilization tasks through comparative assessments with two commonly used control methods:Backstepping and Sliding Mode Control(SMC).While the implementation of the well-trained agents exhibited unexpected behavior during real-world testing,a reduced neural network used for altitude control was successfully implemented on a Parrot Mambo mini drone.The results showcase the potential of the proposed SA-TD3 framework for real-world applications,demonstrating improved stability and precision across various test scenarios and highlighting its feasibility for practical deployment. 展开更多
关键词 deep reinforcement learning hyper-parameters optimization path following QUADROTOR twin delayed deep deterministic policy gradient and simulated annealing
在线阅读 下载PDF
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
5
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 Plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
在线阅读 下载PDF
Deep reinforcement learning guidance with impact time control
6
作者 LI Guofei LI Shituo +1 位作者 LI Bohao WU Yunjie 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1594-1603,共10页
In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desi... In consideration of the field-of-view(FOV)angle con-straint,this study focuses on the guidance problem with impact time control.A deep reinforcement learning guidance method is given for the missile to obtain the desired impact time and meet the demand of FOV angle constraint.On basis of the framework of the proportional navigation guidance,an auxiliary control term is supplemented by the distributed deep deterministic policy gradient algorithm,in which the reward functions are developed to decrease the time-to-go error and improve the terminal guid-ance accuracy.The numerical simulation demonstrates that the missile governed by the presented deep reinforcement learning guidance law can hit the target successfully at appointed arrival time. 展开更多
关键词 impact time deep reinforcement learning guidance law field-of-view(FOV)angle deep deterministic policy gradient
在线阅读 下载PDF
Joint offloading decision and resource allocation in vehicular edge computing networks
7
作者 Shumo Wang Xiaoqin Song +3 位作者 Han Xu Tiecheng Song Guowei Zhang Yang Yang 《Digital Communications and Networks》 2025年第1期71-82,共12页
With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications a... With the rapid development of Intelligent Transportation Systems(ITS),many new applications for Intelligent Connected Vehicles(ICVs)have sprung up.In order to tackle the conflict between delay-sensitive applications and resource-constrained vehicles,computation offloading paradigm that transfers computation tasks from ICVs to edge computing nodes has received extensive attention.However,the dynamic network conditions caused by the mobility of vehicles and the unbalanced computing load of edge nodes make ITS face challenges.In this paper,we propose a heterogeneous Vehicular Edge Computing(VEC)architecture with Task Vehicles(TaVs),Service Vehicles(SeVs)and Roadside Units(RSUs),and propose a distributed algorithm,namely PG-MRL,which jointly optimizes offloading decision and resource allocation.In the first stage,the offloading decisions of TaVs are obtained through a potential game.In the second stage,a multi-agent Deep Deterministic Policy Gradient(DDPG),one of deep reinforcement learning algorithms,with centralized training and distributed execution is proposed to optimize the real-time transmission power and subchannel selection.The simulation results show that the proposed PG-MRL algorithm has significant improvements over baseline algorithms in terms of system delay. 展开更多
关键词 Computation offloading Resource allocation Vehicular edge computing Potential game Multi-agent deep deterministic policy gradient
在线阅读 下载PDF
DDPG-Based Intelligent Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Network
8
作者 Jia Min Wu Jian +2 位作者 Zhang Liang Wang Xinyu Guo Qing 《China Communications》 2025年第3期1-15,共15页
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t... Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms. 展开更多
关键词 computation offloading deep deterministic policy gradient low earth orbit satellite mobile edge computing resource allocation
在线阅读 下载PDF
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
9
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
Deep reinforcement learning and its application in autonomous fitting optimization for attack areas of UCAVs 被引量:14
10
作者 LI Yue QIU Xiaohui +1 位作者 LIU Xiaodong XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期734-742,共9页
The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies wh... The ever-changing battlefield environment requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned combat aerial vehicles(UCAVs) aim to integrate such advanced technologies while increasing the tactical capabilities of combat aircraft. As a research object, common UCAV uses the neural network fitting strategy to obtain values of attack areas. However, this simple strategy cannot cope with complex environmental changes and autonomously optimize decision-making problems. To solve the problem, this paper proposes a new deep deterministic policy gradient(DDPG) strategy based on deep reinforcement learning for the attack area fitting of UCAVs in the future battlefield. Simulation results show that the autonomy and environmental adaptability of UCAVs in the future battlefield will be improved based on the new DDPG algorithm and the training process converges quickly. We can obtain the optimal values of attack areas in real time during the whole flight with the well-trained deep network. 展开更多
关键词 attack area neural network deep deterministic policy gradient(DDPG) unmanned combat aerial vehicle(UCAV)
在线阅读 下载PDF
Moving target defense of routing randomization with deep reinforcement learning against eavesdropping attack 被引量:5
11
作者 Xiaoyu Xu Hao Hu +3 位作者 Yuling Liu Jinglei Tan Hongqi Zhang Haotian Song 《Digital Communications and Networks》 SCIE CSCD 2022年第3期373-387,共15页
Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harm... Eavesdropping attacks have become one of the most common attacks on networks because of their easy implementation. Eavesdropping attacks not only lead to transmission data leakage but also develop into other more harmful attacks. Routing randomization is a relevant research direction for moving target defense, which has been proven to be an effective method to resist eavesdropping attacks. To counter eavesdropping attacks, in this study, we analyzed the existing routing randomization methods and found that their security and usability need to be further improved. According to the characteristics of eavesdropping attacks, which are “latent and transferable”, a routing randomization defense method based on deep reinforcement learning is proposed. The proposed method realizes routing randomization on packet-level granularity using programmable switches. To improve the security and quality of service of legitimate services in networks, we use the deep deterministic policy gradient to generate random routing schemes with support from powerful network state awareness. In-band network telemetry provides real-time, accurate, and comprehensive network state awareness for the proposed method. Various experiments show that compared with other typical routing randomization defense methods, the proposed method has obvious advantages in security and usability against eavesdropping attacks. 展开更多
关键词 Routing randomization Moving target defense deep reinforcement learning deep deterministic policy gradient
在线阅读 下载PDF
Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning 被引量:4
12
作者 Lei Dong Jing Wei +1 位作者 Hao Lin Xinying Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期604-617,共14页
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co... The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents. 展开更多
关键词 Integrated energy system Multi-agent system Distributed optimization Multi-agent deep deterministic policy gradient Real-time optimization decision
在线阅读 下载PDF
RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning
13
作者 YOU Qian XU Qian +2 位作者 YANG Xin ZHANG Tao CHEN Ming 《ZTE Communications》 2023年第2期61-69,共9页
Device-to-device(D2D)communications underlying cellular networks enabled by unmanned aerial vehicles(UAV)have been regarded as promising techniques for next-generation communications.To mitigate the strong interferenc... Device-to-device(D2D)communications underlying cellular networks enabled by unmanned aerial vehicles(UAV)have been regarded as promising techniques for next-generation communications.To mitigate the strong interference caused by the line-of-sight(LoS)airto-ground channels,we deploy a reconfigurable intelligent surface(RIS)to rebuild the wireless channels.A joint optimization problem of the transmit power of UAV,the transmit power of D2D users and the RIS phase configuration are investigated to maximize the achievable rate of D2D users while satisfying the quality of service(QoS)requirement of cellular users.Due to the high channel dynamics and the coupling among cellular users,the RIS,and the D2D users,it is challenging to find a proper solution.Thus,a RIS softmax deep double deterministic(RIS-SD3)policy gradient method is proposed,which can smooth the optimization space as well as reduce the number of local optimizations.Specifically,the SD3 algorithm maximizes the reward of the agent by training the agent to maximize the value function after the softmax operator is introduced.Simulation results show that the proposed RIS-SD3 algorithm can significantly improve the rate of the D2D users while controlling the interference to the cellular user.Moreover,the proposed RIS-SD3 algorithm has better robustness than the twin delayed deep deterministic(TD3)policy gradient algorithm in a dynamic environment. 展开更多
关键词 device-to-device communications reconfigurable intelligent surface deep reinforcement learning softmax deep double deterministic policy gradient
在线阅读 下载PDF
基于深度强化学习的IRS辅助NOMA-MEC通信资源分配优化
14
作者 方娟 刘珍珍 +1 位作者 陈思琪 李硕朋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第8期930-938,共9页
为了解决无法与边缘服务器建立直连通信链路的盲区边缘用户卸载任务的问题,设计了一个基于深度强化学习(deep reinforcement learning, DRL)的智能反射面(intelligent reflecting surface, IRS)辅助非正交多址(non-orthogonal multiple ... 为了解决无法与边缘服务器建立直连通信链路的盲区边缘用户卸载任务的问题,设计了一个基于深度强化学习(deep reinforcement learning, DRL)的智能反射面(intelligent reflecting surface, IRS)辅助非正交多址(non-orthogonal multiple access, NOMA)通信的资源分配优化算法,以获得由系统和速率和能源效率(energy efficiency, EE)加权的最大系统收益,从而实现绿色高效通信。通过深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法联合优化传输功率分配和IRS的反射相移矩阵。仿真结果表明,使用DDPG算法处理移动边缘计算(mobile edge computing, MEC)的通信资源分配优于其他几种对比实验算法。 展开更多
关键词 非正交多址(non-orthogonal multiple access NOMA) 智能反射面(intelligent reflecting surface IRS) 深度确定性策略梯度(deep deterministic policy gradient DDPG)算法 移动边缘计算(mobile edge computing MEC) 能源效率(energy efficiency EE) 系统收益
在线阅读 下载PDF
Fast UAV path planning in urban environments based on three-step experience buffer sampling DDPG
15
作者 Shasha Tian Yuanxiang Li +4 位作者 Xiao Zhang Lu Zheng Linhui Cheng Wei She Wei Xie 《Digital Communications and Networks》 SCIE CSCD 2024年第4期813-826,共14页
The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex buil... The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate. 展开更多
关键词 Unmanned aerial vehicle Path planning deep deterministic policy gradient Three-step experience buffer Particle swarm optimization
在线阅读 下载PDF
A UAV collaborative defense scheme driven by DDPG algorithm 被引量:3
16
作者 ZHANG Yaozhong WU Zhuoran +1 位作者 XIONG Zhenkai CHEN Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1211-1224,共14页
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ... The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process. 展开更多
关键词 deep deterministic policy gradient(DDPG)algorithm unmanned aerial vehicles(UAVs)swarm task decision making deep reinforcement learning sparse reward problem
在线阅读 下载PDF
Deep reinforcement learning for online scheduling of photovoltaic systems with battery energy storage systems
17
作者 Yaze Li Jingxian Wu Yanjun Pan 《Intelligent and Converged Networks》 EI 2024年第1期28-41,共14页
A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to bal... A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to balance energy supplies and demands under uncertain weather conditions.The proposed online scheduling algorithm aims at minimizing the overall energy cost by performing actions such as load shifting and peak shaving through carefully scheduled BESS charging/discharging activities.The scheduling algorithm is developed by using deep deterministic policy gradient(DDPG),a deep reinforcement learning(DRL)algorithm that can deal with continuous state and action spaces.One of the main contributions of this work is a new DDPG reward function,which is designed based on the unique behaviors of energy systems.The new reward function can guide the scheduler to learn the appropriate behaviors of load shifting and peak shaving through a balanced process of exploration and exploitation.The new scheduling algorithm is tested through case studies using real world data,and the results indicate that it outperforms existing algorithms such as Deep Q-learning.The online algorithm can efficiently learn the behaviors of optimum non-casual off-line algorithms. 展开更多
关键词 photovoltaic(PV) battery energy storage system(BESS) Markov decision process(MDP) deep deterministic policy gradient(DDPG)
原文传递
Relevant experience learning:A deep reinforcement learning method for UAV autonomous motion planning in complex unknown environments 被引量:18
18
作者 Zijian HU Xiaoguang GAO +2 位作者 Kaifang WAN Yiwei ZHAI Qianglong WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期187-204,共18页
Unmanned Aerial Vehicles(UAVs)play a vital role in military warfare.In a variety of battlefield mission scenarios,UAVs are required to safely fly to designated locations without human intervention.Therefore,finding a ... Unmanned Aerial Vehicles(UAVs)play a vital role in military warfare.In a variety of battlefield mission scenarios,UAVs are required to safely fly to designated locations without human intervention.Therefore,finding a suitable method to solve the UAV Autonomous Motion Planning(AMP)problem can improve the success rate of UAV missions to a certain extent.In recent years,many studies have used Deep Reinforcement Learning(DRL)methods to address the AMP problem and have achieved good results.From the perspective of sampling,this paper designs a sampling method with double-screening,combines it with the Deep Deterministic Policy Gradient(DDPG)algorithm,and proposes the Relevant Experience Learning-DDPG(REL-DDPG)algorithm.The REL-DDPG algorithm uses a Prioritized Experience Replay(PER)mechanism to break the correlation of continuous experiences in the experience pool,finds the experiences most similar to the current state to learn according to the theory in human education,and expands the influence of the learning process on action selection at the current state.All experiments are applied in a complex unknown simulation environment constructed based on the parameters of a real UAV.The training experiments show that REL-DDPG improves the convergence speed and the convergence result compared to the state-of-the-art DDPG algorithm,while the testing experiments show the applicability of the algorithm and investigate the performance under different parameter conditions. 展开更多
关键词 Autonomous Motion Planning(AMP) deep deterministic policy gradient(DDPG) deep Reinforcement Learning(DRL) Sampling method UAV
原文传递
Jointly improving energy efficiency and smoothing power oscillations of integrated offshore wind and photovoltaic power: a deep reinforcement learning approach 被引量:4
19
作者 Xiuxing Yin Meizhen Lei 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期156-166,共11页
This paper proposes a novel deep reinforcement learning(DRL)control strategy for an integrated offshore wind and photovoltaic(PV)power system for improving power generation efficiency while simultaneously damping osci... This paper proposes a novel deep reinforcement learning(DRL)control strategy for an integrated offshore wind and photovoltaic(PV)power system for improving power generation efficiency while simultaneously damping oscilla-tions.A variable-speed offshore wind turbine(OWT)with electrical torque control is used in the integrated offshore power system whose dynamic models are detailed.By considering the control system as a partially-observable Markov decision process,an actor-critic architecture model-free DRL algorithm,namely,deep deterministic policy gradient,is adopted and implemented to explore and learn the optimal multi-objective control policy.The potential and effectiveness of the integrated power system are evaluated.The results imply that an OWT can respond quickly to sudden changes of the inflow wind conditions to maximize total power generation.Significant oscillations in the overall power output can also be well suppressed by regulating the generator torque,which further indicates that complementary operation of offshore wind and PV power can be achieved. 展开更多
关键词 Offshore wind turbine Offshore photovoltaic power deep reinforcement learning deep deterministic policy gradient Multi-objective optimal control
原文传递
On‑Ramp Merging for Highway Autonomous Driving:An Application of a New Safety Indicator in Deep Reinforcement Learning 被引量:3
20
作者 Guofa Li Weiyan Zhou +2 位作者 Siyan Lin Shen Li Xingda Qu 《Automotive Innovation》 EI CSCD 2023年第3期453-465,共13页
This paper proposes an improved decision-making method based on deep reinforcement learning to address on-ramp merging challenges in highway autonomous driving.A novel safety indicator,time difference to merging(TDTM)... This paper proposes an improved decision-making method based on deep reinforcement learning to address on-ramp merging challenges in highway autonomous driving.A novel safety indicator,time difference to merging(TDTM),is introduced,which is used in conjunction with the classic time to collision(TTC)indicator to evaluate driving safety and assist the merging vehicle in finding a suitable gap in traffic,thereby enhancing driving safety.The training of an autonomous driving agent is performed using the Deep Deterministic Policy Gradient(DDPG)algorithm.An action-masking mechanism is deployed to prevent unsafe actions during the policy exploration phase.The proposed DDPG+TDTM+TTC solution is tested in on-ramp merging scenarios with different driving speeds in SUMO and achieves a success rate of 99.96%without significantly impacting traffic efficiency on the main road.The results demonstrate that DDPG+TDTM+TTC achieved a higher on-ramp merging success rate of 99.96%compared to DDPG+TTC and DDPG. 展开更多
关键词 Autonomous driving On-ramp merging deep reinforcement learning Action-masking mechanism deep deterministic policy gradient(DDPG)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部