期刊文献+
共找到3,991篇文章
< 1 2 200 >
每页显示 20 50 100
Enhancing mineral processing with deep learning: Automated quartz identification using thin section images
1
作者 Gökhan Külekçi Kemal Hacıefendioğlu Hasan Basri Başağa 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期802-816,共15页
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor... The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis. 展开更多
关键词 quartz mineral identification deep learning hyperspectral imaging deep learning in geology
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data
2
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
3
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
在线阅读 下载PDF
Hybrid Deep Learning Approach for Automating App Review Classification:Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework
4
作者 Nahed Alsaleh Reem Alnanih Nahed Alowidi 《Computers, Materials & Continua》 SCIE EI 2025年第1期949-976,共28页
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While t... App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development. 展开更多
关键词 Requirements Engineering(RE) app review analysis usabilitymetrics hybrid deep learning BERT-BiLSTM-CNN
在线阅读 下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
5
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
在线阅读 下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
6
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
在线阅读 下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
7
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
Machine learning and deep learning to improve prevention of anastomotic leak after rectal cancer surgery
8
作者 Francesco Celotto Quoc R Bao +2 位作者 Giulia Capelli Gaya Spolverato Andrew A Gumbs 《World Journal of Gastrointestinal Surgery》 2025年第1期25-31,共7页
Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly ma... Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly machine learning and deep learning,offer promising avenues for predicting and preventing AL.These technologies can analyze extensive clinical datasets to identify preoperative and perioperative risk factors such as malnutrition,body composition,and radiological features.AI-based models have demonstrated superior predictive power compared to traditional statistical methods,potentially guiding clinical decisionmaking and improving patient outcomes.Additionally,AI can provide surgeons with intraoperative feedback on blood supply and anatomical dissection planes,minimizing the risk of intraoperative complications and reducing the likelihood of AL development. 展开更多
关键词 Anastomotic leak Rectal cancer SURGERY Machine learning deep learning
在线阅读 下载PDF
Deep Learning-Based Modeling Methods in Personalized Education
9
作者 Qiang SUN 《Artificial Intelligence Education Studies》 2025年第1期15-30,共16页
Deep learning has significantly transformed personalized education by enabling intelligent adaptation to indi-vidual learning needs.This study explores deep learning-based modeling methods that enhance personalized le... Deep learning has significantly transformed personalized education by enabling intelligent adaptation to indi-vidual learning needs.This study explores deep learning-based modeling methods that enhance personalized learning experiences,optimize instructional content,and predict student progress.We examine key techniques,including recurrent neural networks(RNNs),transformers,reinforcement learning,and multimodal learning analytics,to demonstrate their roles in personalized learning path recommendations and adaptive content gen-eration.Case studies of AI-driven tutoring systems and learning management platforms illustrate real-world applications.Additionally,we address challenges related to data privacy,algorithmic bias,and model inter-pretability.The paper concludes with future directions for deep learning in education,emphasizing its potential for enhancing immersive and intelligent learning environments. 展开更多
关键词 deep learning Personalized learning Adaptive Education learning Analytics Artificial Intelligence
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
10
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 Multi-Model AI deep learning Natural Language Processing (NLP) Explainable AI (XI) Federated learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
Continuum estimation in low-resolution gamma-ray spectra based on deep learning
11
作者 Ri Zhao Li-Ye Liu +5 位作者 Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 《Nuclear Science and Techniques》 2025年第2期5-17,共13页
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ... In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications. 展开更多
关键词 Gamma-ray spectrum Continuum estimation deep learning Convolutional neural network End-to-end prediction
在线阅读 下载PDF
Deep Learning-based Bias Correction Method for Seasonal Prediction of Summer Rainfall in China
12
作者 QU An-kang BAO Qing +1 位作者 ZHU Tao LUO Zhao-ming 《Journal of Tropical Meteorology》 2025年第1期64-74,共11页
Seasonal prediction of summer rainfall in China plays a crucial role in decision-making,environmental protection,and socio-economic development,while it currently has a low prediction skill.We developed a deep learnin... Seasonal prediction of summer rainfall in China plays a crucial role in decision-making,environmental protection,and socio-economic development,while it currently has a low prediction skill.We developed a deep learning-based seasonal prediction bias correction method for summer rainfall in China.Based on prediction fields from the flexible Global Ocean-Atmosphere-Land System Model finite volume version 2(FGOALS-f2),we optimized the loss function of U-Net,trained with different hyperparameters,and selected the optimum model.U-Net model can extract multi-scale feature information and preserve spatial information,making it suitable for processing meteorological data.With this endto-end model,the precipitation distribution can be obtained directly without using the traditional method of data dimensionality reduction(e.g.,Empirical Orthogonal Function),which could maximize the retention of spatio-temporal information of the input data.Optimization of the loss function enhances the prediction results and mitigates model overfitting.The independent prediction shows a significant skill improvement measured by the anomalous correlation coefficient score.The skill has an average value of 0.679 in China(0°–63°N,73°–133°E)and 0.691 in the region of the Chinese mainland,which significantly improves the dynamical prediction skill by 1357%and 4836%.This study suggests that the deep learning(U-Net)-based seasonal prediction bias correction method is a promising approach for improving rainfall prediction of the dynamical model. 展开更多
关键词 seasonal prediction RAINFALL statistical-dynamical model deep learning
在线阅读 下载PDF
A Deep Learning Estimation Method for Temperature-Induced Girder End Displacements of Suspension Bridges
13
作者 Yao Jin Yuan Ren +3 位作者 Chong-Yuan Guo Chong Li Zhao-Yuan Guo Xiang Xu 《Structural Durability & Health Monitoring》 2025年第2期307-325,共19页
To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specif... To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance. 展开更多
关键词 Suspension bridges thermal response girder end displacement deep learning
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning
14
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
Numerical Study of Dynamical System Using Deep Learning Approach
15
作者 Manana Chumburidze Miranda Mnatsakaniani +1 位作者 David Lekveishvili Nana Julakidze 《Open Journal of Applied Sciences》 2025年第2期425-432,共8页
This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computation... This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computationally numerical format has been used. In particular, for investigation mathematical models of the dynamical system of cancer cell invasion in inhomogeneous areas of human tissues have been considered. Neural operators were initially proposed to model the differential operator of PDEs. The GKNN mapping features between input data to the PDEs and their solutions have been constructed. The boundary integral method in combination with Green’s functions for a large number of boundary conditions is used. The tools applied in this development are based on the Fourier neural operators (FNOs), graph theory, theory elasticity, and singular integral equations. 展开更多
关键词 deep learning Graph Kernel Network Green’s Tensor
在线阅读 下载PDF
Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models
16
作者 Vesal Khean Chomyong Kim +5 位作者 Sunjoo Ryu Awais Khan Min Kyung Hong Eun Young Kim Joungmin Kim Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2024年第10期773-787,共15页
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov... Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture. 展开更多
关键词 Convolutional neural network deep learning human interaction recognition ResNet skeleton joint key points human pose estimation hybrid deep learning and machine learning
在线阅读 下载PDF
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
17
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan R.Rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 Brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
在线阅读 下载PDF
Deep Learning Hybrid Model for Lithium-Ion Battery Aging Estimation and Prediction
18
作者 项越 姜波 戴海峰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期215-222,共8页
The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Co... The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Consequently,the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention.Nonetheless,prevailing research predominantly concentrates on either aging estimation or prediction,neglecting the dynamic fusion of both facets.This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning,wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes.By amalgamating historical capacity decay data,the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries.Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.Specifically,under a charging condition of 0.25 C,a mean absolute percentage error(MAPE)of 0.29%is achieved.This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems(BMS),thereby affording estimations and prognostications of capacity decline with heightened precision. 展开更多
关键词 lithium-ion battery state of health deep learning relaxation process
在线阅读 下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:3
19
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
在线阅读 下载PDF
Exploring deep learning for landslide mapping:A comprehensive review 被引量:2
20
作者 Zhi-qiang Yang Wen-wen Qi +1 位作者 Chong Xu Xiao-yi Shao 《China Geology》 CAS CSCD 2024年第2期330-350,共21页
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f... A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection. 展开更多
关键词 Landslide Mapping Quantitative hazard assessment deep learning Artificial intelligence Neural network Big data Geological hazard survery engineering
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部