期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
B^(2)C^(3)NetF^(2):Breast cancer classification using an end‐to‐end deep learning feature fusion and satin bowerbird optimization controlled Newton Raphson feature selection
1
作者 Mamuna Fatima Muhammad Attique Khan +2 位作者 Saima Shaheen Nouf Abdullah Almujally Shui‐Hua Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1374-1390,共17页
Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show mor... Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks,such as skin cancer,colorectal cancer,brain tumour,cardiac disease,Breast cancer(BrC),and a few more.The manual diagnosis of medical issues always requires an expert and is also expensive.Therefore,developing some computer diagnosis techniques based on deep learning is essential.Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage.It is estimated that patients with BrC will rise to 70%in the next 20 years.If diagnosed at a later stage,the survival rate of patients with BrC is shallow.Hence,early detection is essential,increasing the survival rate to 50%.A new framework for BrC classification is presented that utilises deep learning and feature optimization.The significant steps of the presented framework include(i)hybrid contrast enhancement of acquired images,(ii)data augmentation to facilitate better learning of the Convolutional Neural Network(CNN)model,(iii)a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes,(iv)deep transfer learning based model training for feature extraction,(v)the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach,and(vi)optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers.The experiments of the proposed framework have been carried out using the most critical and publicly available dataset,such as CBISDDSM,and obtained the best accuracy of 94.5%along with improved computation time.The comparison depicts that the presented method surpasses the current state‐ofthe‐art approaches. 展开更多
关键词 artificial intelligence artificial neural network deep learning medical image processing multi‐objective optimization
在线阅读 下载PDF
Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
2
作者 JoséEscorcia-Gutierrez Margarita Gamarra +3 位作者 Roosvel Soto-Diaz Safa Alsafari Ayman Yafoz Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2023年第6期5255-5270,共16页
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin... A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%. 展开更多
关键词 Artificial intelligence chest X-ray COVID-19 optimized synergic deep learning PREPROCESSING public health
在线阅读 下载PDF
Spectrum Sensing Using Optimized Deep Learning Techniquesin Reconfigurable Embedded Systems
3
作者 Priyesh Kumar PonniyinSelvan 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2041-2054,共14页
The exponential growth of Internet of Things(IoT)and 5G networks has resulted in maximum users,and the role of cognitive radio has become pivotal in handling the crowded users.In this scenario,cognitive radio techniqu... The exponential growth of Internet of Things(IoT)and 5G networks has resulted in maximum users,and the role of cognitive radio has become pivotal in handling the crowded users.In this scenario,cognitive radio techniques such as spectrum sensing,spectrum sharing and dynamic spectrum access will become essential components in Wireless IoT communication.IoT devices must learn adaptively to the environment and extract the spectrum knowledge and inferred spectrum knowledge by appropriately changing communication parameters such as modulation index,frequency bands,coding rate etc.,to accommodate the above characteristics.Implementing the above learning methods on the embedded chip leads to high latency,high power consumption and more chip area utilisation.To overcome the problems mentioned above,we present DEEP HOLE Radio sys-tems,the intelligent system enabling the spectrum knowledge extraction from the unprocessed samples by the optimized deep learning models directly from the Radio Frequency(RF)environment.DEEP HOLE Radio provides(i)an opti-mized deep learning framework with a good trade-off between latency,power and utilization.(ii)Complete Hardware-Software architecture where the SoC’s coupled with radio transceivers for maximum performance.The experimentation has been carried out using GNURADIO software interfaced with Zynq-7000 devices mounting on ESP8266 radio transceivers with inbuilt Omni direc-tional antennas.The whole spectrum of knowledge has been extracted using GNU radio.These extracted features are used to train the proposed optimized deep learning models,which run parallel on Zynq-SoC 7000,consuming less area,power,latency and less utilization area.The proposed framework has been evaluated and compared with the existing frameworks such as RFLearn,Long Term Short Memory(LSTM),Convolutional Neural Networks(CNN)and Deep Neural Networks(DNN).The outcome shows that the proposed framework has outperformed the existing framework regarding the area,power and time.More-over,the experimental results show that the proposed framework decreases the delay,power and area by 15%,20%25%concerning the existing RFlearn and other hardware constraint frameworks. 展开更多
关键词 Internet of things cognitive radio spectrum sharing optimized deep learning framework GNU radio RF learn
在线阅读 下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
4
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
在线阅读 下载PDF
Hybrid Metaheuristics Based License Plate Character Recognition in Smart City
5
作者 Esam A.Al.Qaralleh Fahad Aldhaban +2 位作者 Halah Nasseif Bassam A.Y.Alqaralleh Tamer AbuKhalil 《Computers, Materials & Continua》 SCIE EI 2022年第9期5727-5740,共14页
Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On th... Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On the other hand,the automatic identification of vehicle license plate(LP)character becomes an essential process to recognize vehicles in real time scenarios,which can be achieved by the exploitation of optimal deep learning(DL)approaches.In this article,a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition(HMODL-ALPCR)technique has been presented for smart city environments.The major intention of the HMODL-ALPCR technique is to detect LPs and recognize the characters that exist in them.For effective LP detection process,mask regional convolutional neural network(Mask-RCNN)model is applied and the Inception with Residual Network(ResNet)-v2 as the baseline network.In addition,hybrid sunflower optimization with butterfly optimization algorithm(HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally,Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique over the recent methods. 展开更多
关键词 Smart city license plate recognition optimal deep learning metaheuristic algorithms parameter tuning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部