Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine lea...Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.展开更多
With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on ...With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios.展开更多
The health monitoring and fault diagnosis of heavy-duty engines are increasingly important for energy storage ecosystem. During operation, vibration characters corresponding to the specific fault need to be extracted ...The health monitoring and fault diagnosis of heavy-duty engines are increasingly important for energy storage ecosystem. During operation, vibration characters corresponding to the specific fault need to be extracted from the overall system vibration. Faulty characteristics emanating from one single cylinder are also mixed with those from other cylinders. Besides, the change of working condition brings strong nonlinearities in surface vibration. To solve these problems, an improved deep residual shrinkage network (IDRSN) is developed for detecting diverse engine faults at various degrees using single channel surface vibration signal. Within IDRSN, a wide convolution kernel is utilized in first convolution layer to capture the long-term fault-related impacts and eliminate the short-time random impact. The residual network module is adopted to enhance the focus the relevant components of vibration signals. Mini-batch training strategy is used to improve the model stability. Meanwhile, Gradient-weighted class activation map is adopted to assess the consistency between the learned knowledge and the fault-related information. The IDRSN is implemented to diagnosing a diesel engine under various faults, faulty degrees and operating speeds. Comparisons with existing models are analyzed in terms of hyper-parameters, training samples, noise resistance, and visualization. Results demonstrate the proposed IDRSN's superior performance on fault diagnosis accuracy, stability, anti-noise performance, and anti-interference performance. An average accuracy rate of 98.38 % was achieved by the proposed IDRSN, in comparison to 96.64 % and 93.56 % achieved by the DRSN and the wide-kernel deep convolutional neural network respectively. These results highlight the proposed IDRSN's superiority in diagnosing multiple faults under various working conditions, offering a low-cost, highly effective, and applicable approach for complex fault diagnosis tasks.展开更多
A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is...A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.展开更多
基金the National Natural Science Foundation of China(No.U20B2038,No.61871398,NO.61901520 and No.61931011)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Key R&D Program of China under Grant 2018YFB1801103.
文摘Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.
文摘With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios.
基金funded by the National Key R&D Program of China(Grant No.2021YFD2000303)Tianjin Research Innovation Project for Postgraduate Students in China(Grant No.2021YJSB182)Weichai Power Co.,Ltd.in China(Grant No.WCDL-GH-2023-0147).
文摘The health monitoring and fault diagnosis of heavy-duty engines are increasingly important for energy storage ecosystem. During operation, vibration characters corresponding to the specific fault need to be extracted from the overall system vibration. Faulty characteristics emanating from one single cylinder are also mixed with those from other cylinders. Besides, the change of working condition brings strong nonlinearities in surface vibration. To solve these problems, an improved deep residual shrinkage network (IDRSN) is developed for detecting diverse engine faults at various degrees using single channel surface vibration signal. Within IDRSN, a wide convolution kernel is utilized in first convolution layer to capture the long-term fault-related impacts and eliminate the short-time random impact. The residual network module is adopted to enhance the focus the relevant components of vibration signals. Mini-batch training strategy is used to improve the model stability. Meanwhile, Gradient-weighted class activation map is adopted to assess the consistency between the learned knowledge and the fault-related information. The IDRSN is implemented to diagnosing a diesel engine under various faults, faulty degrees and operating speeds. Comparisons with existing models are analyzed in terms of hyper-parameters, training samples, noise resistance, and visualization. Results demonstrate the proposed IDRSN's superior performance on fault diagnosis accuracy, stability, anti-noise performance, and anti-interference performance. An average accuracy rate of 98.38 % was achieved by the proposed IDRSN, in comparison to 96.64 % and 93.56 % achieved by the DRSN and the wide-kernel deep convolutional neural network respectively. These results highlight the proposed IDRSN's superiority in diagnosing multiple faults under various working conditions, offering a low-cost, highly effective, and applicable approach for complex fault diagnosis tasks.
基金supported by the National Natural Science Foundation of China(No.51875113)the Natural Science Joint Guidance Foundation of the Heilongjiang Province of China(No.LH2019E027)the PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.XK2070021009),China。
文摘A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.