Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic t...Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic test pattern generation (ATPG). In addition, ATPG needs to deal with new defects caused by process variation when IC is shrinking. To reduce the computation effort of ATPG, test generation could be started earlier at higher abstraction level, which is in line with top-down design methodology that has become more popular nowadays. In this research, we employ Chen’s high-level fault model in the high-level ATPG. Besides shorter ATPG time as shown in many previous works, our study showed that high-level ATPG also contributes to test compaction. This is because most of the high-level faults correlate with the gate-level collapsed faults especially at input/output of the modules in a circuit. The high-level ATPG prototype used in our work is mainly composed by constraint-driven test generation engine and fault simulation engine. Experimental result showed that more reduced/compact test set can be generated from the high-level ATPG.展开更多
Purpose Hundreds of digital beam position monitor processors(DBPM)are required to be produced during the construction of projects such as High Energy Photon Source(HEPS)and the upgrade project of the Beijing Electron ...Purpose Hundreds of digital beam position monitor processors(DBPM)are required to be produced during the construction of projects such as High Energy Photon Source(HEPS)and the upgrade project of the Beijing Electron Positron Collider(BEPCII),which brings great challenges to the test work.In order to achieve accurate,fast,and complete mass production tests of DBPMs,an automatic test system(ATS)has been developed in this article.Methods According to the test items of DBPM,the standardized testing softwareflow is designed based on virtual instru-ment program control technology and experimental physics and industrial control system(EPICS),which realize automatic adjustment of test parameters and automatic acquisition of test result data.Results and conclusions The ATS can realize one-button testing of channel coefficients,channel linearity,attenuator linearity,beam current dependence(BCD)and sampling signal-to-noise ratio(SNR),and generate test reports.The total test time is less than 3 minutes,which is significantly more efficient compared to manual testing.More than 90 BEPCII DBPMs has been tested by this ATS in the lab.The test results proved that such a system could automatically recognize defective products and satisfy the requirements of mass testing.展开更多
文摘Advancements in semiconductor technology are making gate-level test generation more challenging. This is because a large amount of detailed structural information must be processed in the search process of automatic test pattern generation (ATPG). In addition, ATPG needs to deal with new defects caused by process variation when IC is shrinking. To reduce the computation effort of ATPG, test generation could be started earlier at higher abstraction level, which is in line with top-down design methodology that has become more popular nowadays. In this research, we employ Chen’s high-level fault model in the high-level ATPG. Besides shorter ATPG time as shown in many previous works, our study showed that high-level ATPG also contributes to test compaction. This is because most of the high-level faults correlate with the gate-level collapsed faults especially at input/output of the modules in a circuit. The high-level ATPG prototype used in our work is mainly composed by constraint-driven test generation engine and fault simulation engine. Experimental result showed that more reduced/compact test set can be generated from the high-level ATPG.
基金funded by the Foundation ofYouth Innovation Promotion Association,CAS(No.Y202005)the Major achievements cultivation project of major scientific and technological infrastructure,CAS(No.NE01G74Y2)the National Natural Science Foundation of China(No.11805221).
文摘Purpose Hundreds of digital beam position monitor processors(DBPM)are required to be produced during the construction of projects such as High Energy Photon Source(HEPS)and the upgrade project of the Beijing Electron Positron Collider(BEPCII),which brings great challenges to the test work.In order to achieve accurate,fast,and complete mass production tests of DBPMs,an automatic test system(ATS)has been developed in this article.Methods According to the test items of DBPM,the standardized testing softwareflow is designed based on virtual instru-ment program control technology and experimental physics and industrial control system(EPICS),which realize automatic adjustment of test parameters and automatic acquisition of test result data.Results and conclusions The ATS can realize one-button testing of channel coefficients,channel linearity,attenuator linearity,beam current dependence(BCD)and sampling signal-to-noise ratio(SNR),and generate test reports.The total test time is less than 3 minutes,which is significantly more efficient compared to manual testing.More than 90 BEPCII DBPMs has been tested by this ATS in the lab.The test results proved that such a system could automatically recognize defective products and satisfy the requirements of mass testing.