Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the i...Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.展开更多
The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and ...The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.展开更多
Direct Monte Carlo(MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on ...Direct Monte Carlo(MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper.This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event,hence the decrease in the variance of MC estimator.Several cases are used to benchmark this method.The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation.The performance is greatly improved by the biasing transition rate method.展开更多
The new improved directional vector simulation method foranalyzing the reliability of struc- tural systems failure probabilityis researched. This paper also points out the defects of generaldirectional vector simulati...The new improved directional vector simulation method foranalyzing the reliability of struc- tural systems failure probabilityis researched. This paper also points out the defects of generaldirectional vector simulation, and gives rise to a new higheraccuracy approximate integral formula of structural systems failureprobability. A new geometric meaning of characteristic function isobtained. A new simple method of generating uniformly distributedrandom vector sample sin n-dimensional unit hyper-spherical surfaceis put forward and strictly proved. This method is easy to put intopractice. Numerical examples are given to show the applicability andeffectiveness of the suggested approach to structural systemsreliability problems.展开更多
This paper uses a direct simulation Monte Carlo (DSMC) approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor (MGS) spacecraft. The research focus...This paper uses a direct simulation Monte Carlo (DSMC) approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor (MGS) spacecraft. The research focuses on the flowfield and aerodynamic characteristics distribution under various free stream densities. The vari- ation regularity of aerodynamic coefficients is analyzed. The paper also develops an aerodynamics-aeroheating-trajectory integrative simulation model to preliminarily calculate the aerobraking orbit transfer by combining the DSMC technique and the classical kinematics theory. The results show that the effect of the planetary atmospheric density, the spacecraft yaw, and the pitch attitudes on the spacecraft aerodynamics is significant. The numerical results are in good agreement with the existing results reported in the literature. The aerodynamics-aeroheating-trajectory integrative simulation model can simulate the orbit transfer in the complete aerobraking mission. The current results of the spacecraft trajectory show that the aerobraking maneuvers have good performance of attitude control.展开更多
Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the fi...Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the first two terms of the Boltzmann equation can be discretized by numerical methods such as the finite volume method,the third term can be approximated by DSMC,and DSMC simulates the physical behaviors of gas molecules.However,because of the low sampling efficiency of Monte Carlo Simulation in DSMC,this part usually occupies large portion of computational costs to solve the Boltzmann equation.In this paper,by Markov Chain Monte Carlo(MCMC)and multicore programming,we develop Direct Simulation Multi-Chain Markov Chain Monte Carlo(DSMC3):a fast solver to calculate the numerical solution for the Boltzmann equation.Computational results show that DSMC3 is significantly faster than the conventional method DSMC.展开更多
The general synthetic iterative scheme(GSIS)has proven its efficacy in modeling rare-fied gas dynamics,where the steady-state solutions are obtained after dozens of itera-tions of the Boltzmann equation,with minimal n...The general synthetic iterative scheme(GSIS)has proven its efficacy in modeling rare-fied gas dynamics,where the steady-state solutions are obtained after dozens of itera-tions of the Boltzmann equation,with minimal numerical dissipation even using large spatial cells.In this paper,the fast convergence and asymptotic-preserving properties of the GSIS are harnessed to remove the limitations of the direct simulation Monte Carlo(DSMC)method.The GSIS,which leverages high-order constitutive relations derived from DSMC,is applied intermittently,which not only rapidly steers the DSMC towards steady state,but also eliminates the requirement that the cell size must be smaller than the molecular mean free path.Several numerical tests have been con-ducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.展开更多
In gas-solid flows, particle-particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical ...In gas-solid flows, particle-particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles (e.g., agglomeration and fragmentation) in spite of their initial monodisperse particle distribution. The conventional direct simulation Monte Carlo (DSMC) method for particle collision tracks equally weighted simulation particles, which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions. In this study, a new differentially weighted DSMC (DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian-Lagrangian models for hydrodynamics. Three schemes (mass, momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass, momentum or energy of the whole system unchanged respectively. A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency. The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best. Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC, compared with the equally weighted DSMC. Meanwhile, computational cost can be largely reduced in contrast with direct numerical simulation.展开更多
A new criterion is presented to detect global convergence to steady state,and to identify local transient characteristics,during rarefied gas flow simulations performed using the direct simulation Monte Carlo(DSMC)met...A new criterion is presented to detect global convergence to steady state,and to identify local transient characteristics,during rarefied gas flow simulations performed using the direct simulation Monte Carlo(DSMC)method.Unlike deterministic computational fluid dynamics(CFD)schemes,DSMC is generally subject to large statistical scatter in instantaneous flow property evaluations,which prevents the use of residual tracking procedures as are often employed in CFD simulations.However,reliable prediction of the time to reach steady state is necessary for initialization of DSMC sampling operations.Techniques currently used in DSMC to identify steady state convergence are usually insensitive to weak transient behavior in small regions of relatively low density or recirculating flow.The proposed convergence criterion is developed with the goal of properly identifying such weak transient behavior,while adding negligible computational expense and allowing simple implementation in any existing DSMC code.Benefits of the proposed technique over existing convergence detection methods are demonstrated for representative nozzle/plume expansion flow,hypersonic blunt body flow and driven cavity flow problems.展开更多
使用圆柱坐标系网格的三维DSMC(Direct Simulation Monte Carlo)模型,对同轴圆柱间Taylor-Couette流中Taylor涡的形成进行了数值模拟,并分析了不同计算域和边界条件下稳定流场中Taylor涡的轴向排列结构.在网格设置和流场参数不变的情况...使用圆柱坐标系网格的三维DSMC(Direct Simulation Monte Carlo)模型,对同轴圆柱间Taylor-Couette流中Taylor涡的形成进行了数值模拟,并分析了不同计算域和边界条件下稳定流场中Taylor涡的轴向排列结构.在网格设置和流场参数不变的情况下,使用轴对称DSMC模型对Taylor涡进行数值模拟,所得Taylor涡的稳定过程与三维结果一致,验证了使用三维DSMC方法来解决微尺度低速的稀薄气流问题的可行性.三维模拟结果表明Taylor涡以较大的圆周速度绕轴旋转,二维模拟则无法体现.对不同的内圆柱旋转速度进行数值模拟,确定了能够产生Taylor涡的临界速度值.展开更多
采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流,采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞。单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定,考虑超细颗粒间的van der Wa...采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流,采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞。单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定,考虑超细颗粒间的van der Waals作用力。数值模拟垂直管内超细颗粒气固两相流动,对颗粒相速度、浓度以及团聚物流动过程进行分析。展开更多
NS-DSMC(Navier Stokes-Direct Simulation Monte Carlo)耦合方法是计算连续-稀薄跨流域流动的主要方法,应用过程中如何确定连续流域和稀薄流域的界面是此方法的关键问题之一,界面位置通常通过连续失效参数来判定.为合理选择连续失效参...NS-DSMC(Navier Stokes-Direct Simulation Monte Carlo)耦合方法是计算连续-稀薄跨流域流动的主要方法,应用过程中如何确定连续流域和稀薄流域的界面是此方法的关键问题之一,界面位置通常通过连续失效参数来判定.为合理选择连续失效参数,对目前广泛使用的两种连续失效参数KnQ和B参数进行了理论上的分析和比较,表明虽然他们建立的出发点不同,但在数学形式上具有一定相似性.通过圆柱绕流问题的数值试验进一步验证了两种连续失效参数具有一定对应关系.KnQ和B两种连续失效参数在NS-DSMC耦合方法中应用效果相差不大,但KnQ的阈值0.05适用范围较广,而B参数的阈值对不同流动问题会有变化.展开更多
文摘Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.
基金Projects(51206011,U1937201)supported by the National Natural Science Foundation of ChinaProject(20200301040RQ)supported by the Science and Technology Development Program of Jilin Province,China+1 种基金Project(JJKH20190541KJ)supported by the Education Department of Jilin Province,ChinaProject(18DY017)supported by Changchun Science and Technology Program of Changchun City,China。
文摘The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.
基金supported by the Special Projects of International Thermonuclear Experimental Reactor(2015GB116000)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA03040000)+1 种基金the Informatizational Special Projects of Chinese Academy of Sciences(No.XXH12504-1-09)the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2014FXCX004)
文摘Direct Monte Carlo(MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system.But it is not efficient at simulating rare events.A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper.This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event,hence the decrease in the variance of MC estimator.Several cases are used to benchmark this method.The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation.The performance is greatly improved by the biasing transition rate method.
文摘The new improved directional vector simulation method foranalyzing the reliability of struc- tural systems failure probabilityis researched. This paper also points out the defects of generaldirectional vector simulation, and gives rise to a new higheraccuracy approximate integral formula of structural systems failureprobability. A new geometric meaning of characteristic function isobtained. A new simple method of generating uniformly distributedrandom vector sample sin n-dimensional unit hyper-spherical surfaceis put forward and strictly proved. This method is easy to put intopractice. Numerical examples are given to show the applicability andeffectiveness of the suggested approach to structural systemsreliability problems.
基金Project supported by the Aerospace Foundation of China Academy of Space Technology (No.CAST2006023)
文摘This paper uses a direct simulation Monte Carlo (DSMC) approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor (MGS) spacecraft. The research focuses on the flowfield and aerodynamic characteristics distribution under various free stream densities. The vari- ation regularity of aerodynamic coefficients is analyzed. The paper also develops an aerodynamics-aeroheating-trajectory integrative simulation model to preliminarily calculate the aerobraking orbit transfer by combining the DSMC technique and the classical kinematics theory. The results show that the effect of the planetary atmospheric density, the spacecraft yaw, and the pitch attitudes on the spacecraft aerodynamics is significant. The numerical results are in good agreement with the existing results reported in the literature. The aerodynamics-aeroheating-trajectory integrative simulation model can simulate the orbit transfer in the complete aerobraking mission. The current results of the spacecraft trajectory show that the aerobraking maneuvers have good performance of attitude control.
文摘Direct Simulation Monte Carlo(DSMC)solves the Boltzmann equation with large Knudsen number.The Boltzmann equation generally consists of three terms:the force term,the diffusion term and the collision term.While the first two terms of the Boltzmann equation can be discretized by numerical methods such as the finite volume method,the third term can be approximated by DSMC,and DSMC simulates the physical behaviors of gas molecules.However,because of the low sampling efficiency of Monte Carlo Simulation in DSMC,this part usually occupies large portion of computational costs to solve the Boltzmann equation.In this paper,by Markov Chain Monte Carlo(MCMC)and multicore programming,we develop Direct Simulation Multi-Chain Markov Chain Monte Carlo(DSMC3):a fast solver to calculate the numerical solution for the Boltzmann equation.Computational results show that DSMC3 is significantly faster than the conventional method DSMC.
基金This work is supported by the National Natural Science Foundation of China(No.12172162)the Stable Support Plan(No.80000900019910072348).
文摘The general synthetic iterative scheme(GSIS)has proven its efficacy in modeling rare-fied gas dynamics,where the steady-state solutions are obtained after dozens of itera-tions of the Boltzmann equation,with minimal numerical dissipation even using large spatial cells.In this paper,the fast convergence and asymptotic-preserving properties of the GSIS are harnessed to remove the limitations of the direct simulation Monte Carlo(DSMC)method.The GSIS,which leverages high-order constitutive relations derived from DSMC,is applied intermittently,which not only rapidly steers the DSMC towards steady state,but also eliminates the requirement that the cell size must be smaller than the molecular mean free path.Several numerical tests have been con-ducted to validate the accuracy and efficiency of this hybrid GSIS-DSMC approach.
基金supported by the National Natural Science Foundation of China(51276077 and 51390494)the National Key Basic Research and Development Program(2010CB227004)
文摘In gas-solid flows, particle-particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles (e.g., agglomeration and fragmentation) in spite of their initial monodisperse particle distribution. The conventional direct simulation Monte Carlo (DSMC) method for particle collision tracks equally weighted simulation particles, which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions. In this study, a new differentially weighted DSMC (DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian-Lagrangian models for hydrodynamics. Three schemes (mass, momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass, momentum or energy of the whole system unchanged respectively. A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency. The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best. Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC, compared with the equally weighted DSMC. Meanwhile, computational cost can be largely reduced in contrast with direct numerical simulation.
基金NASA for financial support of this work,through grant NNX08AD02A.
文摘A new criterion is presented to detect global convergence to steady state,and to identify local transient characteristics,during rarefied gas flow simulations performed using the direct simulation Monte Carlo(DSMC)method.Unlike deterministic computational fluid dynamics(CFD)schemes,DSMC is generally subject to large statistical scatter in instantaneous flow property evaluations,which prevents the use of residual tracking procedures as are often employed in CFD simulations.However,reliable prediction of the time to reach steady state is necessary for initialization of DSMC sampling operations.Techniques currently used in DSMC to identify steady state convergence are usually insensitive to weak transient behavior in small regions of relatively low density or recirculating flow.The proposed convergence criterion is developed with the goal of properly identifying such weak transient behavior,while adding negligible computational expense and allowing simple implementation in any existing DSMC code.Benefits of the proposed technique over existing convergence detection methods are demonstrated for representative nozzle/plume expansion flow,hypersonic blunt body flow and driven cavity flow problems.
文摘使用圆柱坐标系网格的三维DSMC(Direct Simulation Monte Carlo)模型,对同轴圆柱间Taylor-Couette流中Taylor涡的形成进行了数值模拟,并分析了不同计算域和边界条件下稳定流场中Taylor涡的轴向排列结构.在网格设置和流场参数不变的情况下,使用轴对称DSMC模型对Taylor涡进行数值模拟,所得Taylor涡的稳定过程与三维结果一致,验证了使用三维DSMC方法来解决微尺度低速的稀薄气流问题的可行性.三维模拟结果表明Taylor涡以较大的圆周速度绕轴旋转,二维模拟则无法体现.对不同的内圆柱旋转速度进行数值模拟,确定了能够产生Taylor涡的临界速度值.
文摘采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流,采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞。单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定,考虑超细颗粒间的van der Waals作用力。数值模拟垂直管内超细颗粒气固两相流动,对颗粒相速度、浓度以及团聚物流动过程进行分析。
文摘NS-DSMC(Navier Stokes-Direct Simulation Monte Carlo)耦合方法是计算连续-稀薄跨流域流动的主要方法,应用过程中如何确定连续流域和稀薄流域的界面是此方法的关键问题之一,界面位置通常通过连续失效参数来判定.为合理选择连续失效参数,对目前广泛使用的两种连续失效参数KnQ和B参数进行了理论上的分析和比较,表明虽然他们建立的出发点不同,但在数学形式上具有一定相似性.通过圆柱绕流问题的数值试验进一步验证了两种连续失效参数具有一定对应关系.KnQ和B两种连续失效参数在NS-DSMC耦合方法中应用效果相差不大,但KnQ的阈值0.05适用范围较广,而B参数的阈值对不同流动问题会有变化.