Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.Thi...In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol...A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate an...On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.展开更多
The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtai...The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing.A grain shape library was constructed for grain shape analysis with different shape descriptors.The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration.Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns.Each grain was compressed diametrically between flat platens.As expected,the values of the stress at bulk fracture follow a Weibull distribution.A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated,which was accomplished in the discrete element modeling(DEM)of the single grain crushing test.The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered.The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles.Finally,three parametric studies were presented evaluating the effects of micro-crack density,micro-crack disorder,and grain morphology on the Weibullian behavior of the crushing strength,none of which has previously been thoroughly considered.These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength.展开更多
Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,...Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification.展开更多
In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model ...In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step △t or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of △t and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.展开更多
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ...This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3...The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3-D boundary element models, which provide much needed flexibility in the bound- ary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.展开更多
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
基金funded by the Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining(Grant No.EC2021004).
文摘In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
文摘A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by the Key Projects of the National Science Foundation of China(Nos.52178190,52078250,11832013)
文摘On the basis of the three-dimensional(3D)random aggregate&mortar two-phase mesoscale finite element model,C++programming was used to identify the node position information of the interface between the aggregate and mortar elements.The nodes were discretized at this position and the zero-thickness cohesive elements were inserted.After that,the crack energy release rate fracture criterion based on the fracture mechanics theory was assigned to the failure criterion of the interface transition zone(ITZ)elements.Finally,the three-phase mesomechanical model based on the combined finite discrete element method(FDEM)was constructed.Based on this model,the meso-crack extension and macro-mechanical behaviour of coral aggregate concrete(CAC)under uniaxial compression were successfully simulated.The results demonstrated that the meso-mechanical model based on FDEM has excellent applicability to simulate the compressive properties of CAC.
基金financial support by the National Key R&D Program of China (No. 2017YFC0404801)National Natural Science Foundation of China (Grant Nos. 51579193 and 51779194)Major Special Project of Guizhou Science Cooperation (No.[2017]3005-2)
文摘The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing.A grain shape library was constructed for grain shape analysis with different shape descriptors.The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration.Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns.Each grain was compressed diametrically between flat platens.As expected,the values of the stress at bulk fracture follow a Weibull distribution.A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated,which was accomplished in the discrete element modeling(DEM)of the single grain crushing test.The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered.The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles.Finally,three parametric studies were presented evaluating the effects of micro-crack density,micro-crack disorder,and grain morphology on the Weibullian behavior of the crushing strength,none of which has previously been thoroughly considered.These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength.
基金This work was supported by the NSFS(Natural Science Foundation of Shanghai)Program under grant number 21ZR1465400.
文摘Cyclic load is widely adopted in laboratory to simulate the effect of train load on ballast bed.The effectiveness of such load equivalence is usually testified by having similar results of key concerns of ballast bed,such as deformation or stiffness,while the consistency of particle scale characteristics under two loading patterns is rarely examined,which is insufficient to well-understand and use the load simplification.In this study,a previous laboratory model test of ballast bed under cyclic load is rebuilt using 3D discrete element method(DEM),which is validated by dynamic responses monitored by high-resolution sensors.Then,train load having the same magnitude and amplitude as the cyclic load is applied in the numerical model to obtain the statistical characteristics of inter-particle contact force and particle movements in ballast bed.The results show that particle scale responses under two loading patterns could have quite deviation,even when macro-scale responses of ballast bed under two loading patterns are very close.This inconsistency indicates that the application scale of the DEM model should not exceed the validation scale.Moreover,it is important to examine multiscale responses to validate the effectiveness of load simplification.
文摘In this article, the fmite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step △t or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of △t and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.
文摘This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discreti- zations for solving 3-D boundary element models, which provide much needed flexibility in the bound- ary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.