The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ...The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ability of the discrete forms expressing to the element functions was talked about. In discrete operator difference method, the displacements of the elements can be reproduced exactly in the discrete forms whether the displacements are conforming or not. According to this point, discrete operator difference method is a method with good performance.展开更多
Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the ...Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to展开更多
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th...This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.展开更多
In this study, finite difference method is used to solve the equations that govern groundwater flow to obtain flow rates, flow direction and hydraulic heads through an aquifer. The aim therefore is to discuss the prin...In this study, finite difference method is used to solve the equations that govern groundwater flow to obtain flow rates, flow direction and hydraulic heads through an aquifer. The aim therefore is to discuss the principles of Finite Difference Method and its applications in groundwater modelling. To achieve this, a rectangular grid is overlain an aquifer in order to obtain an exact solution. Initial and boundary conditions are then determined. By discretizing the system into grids and cells that are small compared to the entire aquifer, exact solutions are obtained. A flow chart of the computational algorithm for particle tracking is also developed. Results show that under a steady-state flow with no recharge, pathlines coincide with streamlines. It is also found that the accuracy of the numerical solution by Finite Difference Method is largely dependent on initial particle distribution and number of particles assigned to a cell. It is therefore concluded that Finite Difference Method can be used to predict the future direction of flow and particle location within a simulation domain.展开更多
Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irr...Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.展开更多
The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux ...The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux nonlinear finite difference equation is proposed for MOC transport calculations.This method comprises three essential features:(1)the even parity discrete ordinates method is used to build a low-order angular flux nonlinear finite difference equation,and different boundary condition treatments are proposed;(2)two new defined factors,i.e.,the even parity discontinuity factor and odd parity discontinuity factor,are strictly defined to achieve equivalence between the low-order angular flux nonlinear finite difference method and MOC transport calculation;(3)the energy group and angle are decoupled to construct a symmetric linear system that is much easier to solve.The equivalence of this low-order angular flux nonlinear finite difference equation is analyzed for two-dimensional(2D)pin,2D assembly,and 2D C5G7 benchmark problems.Numerical results demonstrate that a low-order angular flux nonlinear finite difference equation that is completely equivalent to the pin-resolved transport equation is established.展开更多
A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with resp...A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function, constraint functions and their First-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted.展开更多
This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that...This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that the value of any European contingent claim should satisfy, where the asset price obeys the SVJ model. This equation is numerically solved by using the implicit- explicit backward difference method and time semi-discretization. In order to explain the validity of our method, the stability of time semi-discretization scheme is also proved. Finally, we use a simulation example to illustrate the efficiency of the method.展开更多
This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The ...This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.展开更多
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
We use the local Fourier analysis to determine the properties of the multigrid method when used in modeling the skin penetration of a drug. The analyses of these properties can be very in designing an efficient struct...We use the local Fourier analysis to determine the properties of the multigrid method when used in modeling the skin penetration of a drug. The analyses of these properties can be very in designing an efficient structure of the multigrid method and in comparing the element and finite difference discretization techniques. After the theoretical results obtained, we also present some numerical results for a problem for which the solution is known.展开更多
For the five-point discrete formulae of directional derivatives in the finite point method,overcoming the challenge resulted from scattered point sets and making full use of the explicit expressions and accuracy of th...For the five-point discrete formulae of directional derivatives in the finite point method,overcoming the challenge resulted from scattered point sets and making full use of the explicit expressions and accuracy of the formulae,this paper obtains a number of theoretical results:(1)a concise expression with definite meaning of the complicated directional difference coefficient matrix is presented,which characterizes the correlation between coefficients and the connection between coefficients and scattered geometric characteristics;(2)various expressions of the discriminant function for the solvability of numerical differentials along with the estimation of its lower bound are given,which are the bases for selecting neighboring points and making analysis;(3)the estimations of combinatorial elements and of each element in the directional difference coefficient matrix are put out,which exclude the existence of singularity.Finally,the theoretical analysis results are verified by numerical calculations.The results of this paper have strong regularity,which lay the foundation for further research on the finite point method for solving partial differential equations.展开更多
The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dom...The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.展开更多
文摘The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ability of the discrete forms expressing to the element functions was talked about. In discrete operator difference method, the displacements of the elements can be reproduced exactly in the discrete forms whether the displacements are conforming or not. According to this point, discrete operator difference method is a method with good performance.
文摘Nonlinear Schrodinger equation (NSE) arises in many physical problems. It is a very important equation. A lot of works studied the wellposed, the existence of solution of NSE etc. And there are many works studied the numerical methods for it. Recently, since the development of infinite dimensional dynamic system the dynamical behavior of NSE has been investigated. The paper [1] studied the long time wellposedness, the existence of universal attractor and the estimate of Lyapunov exponent for NSE with weakly damped. At the same time it was need to study the large time new computational methods and to discuss its convergence error estimate, the existence of approximate attractors etc. In this pape we study the NSE with weakly damped (1.1). We assume,where 0【λ【2 is a constant. If we wish to construct the higher accuracy computational scheme, it will be difficult that staigh from the equation (1.1). Therefore we start with (1. 4) and use fully discrete Fourier spectral method with time difference to
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
文摘In this study, finite difference method is used to solve the equations that govern groundwater flow to obtain flow rates, flow direction and hydraulic heads through an aquifer. The aim therefore is to discuss the principles of Finite Difference Method and its applications in groundwater modelling. To achieve this, a rectangular grid is overlain an aquifer in order to obtain an exact solution. Initial and boundary conditions are then determined. By discretizing the system into grids and cells that are small compared to the entire aquifer, exact solutions are obtained. A flow chart of the computational algorithm for particle tracking is also developed. Results show that under a steady-state flow with no recharge, pathlines coincide with streamlines. It is also found that the accuracy of the numerical solution by Finite Difference Method is largely dependent on initial particle distribution and number of particles assigned to a cell. It is therefore concluded that Finite Difference Method can be used to predict the future direction of flow and particle location within a simulation domain.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872136,11802146,11772085)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT19GJ206,DUT19ZD207).
文摘Considering the interaction between a sleeper,ballast layer,and substructure,a three-dimensional coupled discrete-finite element method for a ballasted railway track is proposed in this study.Ballast granules with irregular shapes are constructed using a clump model using the discrete element method.Meanwhile,concrete sleepers,embankments,and foundations are modelled using 20-node hexahedron solid elements using the finite element method.To improve computational efficiency,a GPU-based(Graphics Processing Unit)parallel framework is applied in the discrete element simulation.Additionally,an algorithm containing contact search and transfer parameters at the contact interface of discrete particles and finite elements is developed in the GPU parallel environment accordingly.A benchmark case is selected to verify the accuracy of the coupling algorithm.The dynamic response of the ballasted rail track is analysed under different train speeds and loads.Meanwhile,the dynamic stress on the substructure surface obtained by the established DEM-FEM model is compared with the in situ experimental results.Finally,stress and displacement contours in the cross-section of the model are constructed to further visualise the response of the ballasted railway.This proposed coupling model can provide important insights into high-performance coupling algorithms and the dynamic characteristics of full scale ballasted rail tracks.
基金the National Key R&D Program of China(No.2018YFE0180900).
文摘The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux nonlinear finite difference equation is proposed for MOC transport calculations.This method comprises three essential features:(1)the even parity discrete ordinates method is used to build a low-order angular flux nonlinear finite difference equation,and different boundary condition treatments are proposed;(2)two new defined factors,i.e.,the even parity discontinuity factor and odd parity discontinuity factor,are strictly defined to achieve equivalence between the low-order angular flux nonlinear finite difference method and MOC transport calculation;(3)the energy group and angle are decoupled to construct a symmetric linear system that is much easier to solve.The equivalence of this low-order angular flux nonlinear finite difference equation is analyzed for two-dimensional(2D)pin,2D assembly,and 2D C5G7 benchmark problems.Numerical results demonstrate that a low-order angular flux nonlinear finite difference equation that is completely equivalent to the pin-resolved transport equation is established.
文摘A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function, constraint functions and their First-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted.
文摘This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that the value of any European contingent claim should satisfy, where the asset price obeys the SVJ model. This equation is numerically solved by using the implicit- explicit backward difference method and time semi-discretization. In order to explain the validity of our method, the stability of time semi-discretization scheme is also proved. Finally, we use a simulation example to illustrate the efficiency of the method.
基金supported by the State Key Development Program for Basic Research of China (973 Program) (Grant No. 2007CB616905)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2007AA03Z112)+1 种基金the National Natural Science Foundation of China (Grant No. 10805019)the Natural Science Foundation of Guangdong Province of China (Grant No. 8451064101000083)
文摘This paper presents the effects of density difference on the three-dimensional (3D) distribution of random mixed packing. The random mixed packing dynamics of particles of two different densities are simulated. The initial state is homogeneous, but the final packing state is inhomogeneous. The segregation phenomenon (inhomogeneous distribution) is also observed. In the final state, the top layers are composed of mostly light particles. The several layers beneath the top contain more heavy particles than light particles. At the bottom, they also contain more heavy particles than light particles. Furthermore, at both the top and the bottom, particle clustering is observed. The current study also analyses the cause of this inhomogeneity in detail. The main cause of this phenomenon is the velocity difference after collision of these two types of particles induced by the density difference. The present study reveals that even if particles were perfectly mixed, the packing process would lead to the final inhomogeneous mixture. It suggests that special treatment may be required to get the true homogeneous packing.
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.
文摘We use the local Fourier analysis to determine the properties of the multigrid method when used in modeling the skin penetration of a drug. The analyses of these properties can be very in designing an efficient structure of the multigrid method and in comparing the element and finite difference discretization techniques. After the theoretical results obtained, we also present some numerical results for a problem for which the solution is known.
基金supported by the National Natural Science Foundation of China(11671049)the Foundation of LCP,and the CAEP Foundation(CX2019026).
文摘For the five-point discrete formulae of directional derivatives in the finite point method,overcoming the challenge resulted from scattered point sets and making full use of the explicit expressions and accuracy of the formulae,this paper obtains a number of theoretical results:(1)a concise expression with definite meaning of the complicated directional difference coefficient matrix is presented,which characterizes the correlation between coefficients and the connection between coefficients and scattered geometric characteristics;(2)various expressions of the discriminant function for the solvability of numerical differentials along with the estimation of its lower bound are given,which are the bases for selecting neighboring points and making analysis;(3)the estimations of combinatorial elements and of each element in the directional difference coefficient matrix are put out,which exclude the existence of singularity.Finally,the theoretical analysis results are verified by numerical calculations.The results of this paper have strong regularity,which lay the foundation for further research on the finite point method for solving partial differential equations.
文摘The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.