Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which...Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.展开更多
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo...Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%.展开更多
A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environment...A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.展开更多
This article presents information on the distribution of Ferula tadshikorum Pimenov species in the botanical—geographical region of Uzbekistan, based on data collected from available resources, including internationa...This article presents information on the distribution of Ferula tadshikorum Pimenov species in the botanical—geographical region of Uzbekistan, based on data collected from available resources, including international sites, and databases, completed papers and directly conducted field studies. At the same time, under the circumstance that the natural area is directly getting smaller, the necessity and relevance of the thesis work on the evaluation of species’ natural reserves and the evaluation of the modern situations are demonstrated through examples. The Surkhandarya region is considered to have the largest number of plant species in Uzbekistan, and it is also distinguished by the variety of species. According to the location of the botanical-geographical regions of Uzbekistan, the territory of the Surkhandarya region is divided into five botanical-geographical regions (BGR). The 5 × 5 km2 grid system map includes 882 cells. Surkhan-Sherabod (BGR), Baisun (BGR), Sangardak-Topalang (BGR), Babatag (BGR), and Kuhitang (BGR) corresponded to these. Simultaneously, the 5 × 5 km2 grid system map of Uzbekistan’s flora in the Surkhandarya region revealed the presence of F. tadshikorum in 109 indices. On the territory of the region, the botanic-geographic region mainly includes the F. tadshikorum, Babatag (BGR), Baisun (BGR), and Kohitang (BGR) indices. The natural resources of F. tadshikorum in these areas were also analyzed.展开更多
The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users wit...The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.展开更多
Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues...Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks.展开更多
A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various form...A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications.展开更多
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
Recovery performance in the event of failures is very important for distributed real-time database systems. This paper presents a time-cognizant logging-based crash recovery scheme (TCLCRS) that aims at distributed ...Recovery performance in the event of failures is very important for distributed real-time database systems. This paper presents a time-cognizant logging-based crash recovery scheme (TCLCRS) that aims at distributed real-time databases, which adopts a main memory database as its ground support. In our scheme, each site maintains a real-time log for local transactions and the subtransactions, which execute at the site, and execte local checkpointing independently. Log records are stored in non-volatile high- speed store, which is divided into four different partitions based on transaction classes. During restart recovery after a site crash, partitioned crash recovery strategy is adopted to ensure that the site can be brought up before the entire local secondary database is reloaded in main memory. The partitioned crash recovery strategy not only guarantees the internal consistency to be recovered, but also guarantee the temporal consistency and recovery of the sates of physical world influenced by uncommitted transactions. Combined with two- phase commit protocol, TCLCRS can guarantee failure atomicity of distributed real-time transactions.展开更多
Most of the proposed concurrency control protocols for real time database systems are based on serializability theorem. Owing to the unique characteristics of real time database applications and the importance of sa...Most of the proposed concurrency control protocols for real time database systems are based on serializability theorem. Owing to the unique characteristics of real time database applications and the importance of satisfying the timing constraints of transactions, serializability is too strong as a correctness criterion and not suitable for real time databases in most cases. On the other hand, relaxed serializability including epsilon serializability and similarity serializability can allow more real time transactions to satisfy their timing constraints, but database consistency may be sacrificed to some extent. We thus propose the use of weak serializability(WSR) that is more relaxed than conflicting serializability while database consistency is maintained. In this paper, we first formally define the new notion of correctness called weak serializability. After the necessary and sufficient conditions for weak serializability are shown, corresponding concurrency control protocol WDHP(weak serializable distributed high priority protocol) is outlined for distributed real time databases, where a new lock mode called mask lock mode is proposed for simplifying the condition of global consistency. Finally, through a series of simulation studies, it is shown that using the new concurrency control protocol the performance of distributed real time databases can be greatly improved.展开更多
This paper formally defines and analyses the new notion of correctness called quasi serializability, and then outlines corresponding concurrency control protocol QDHP for distributed real-time databases. Finally, thro...This paper formally defines and analyses the new notion of correctness called quasi serializability, and then outlines corresponding concurrency control protocol QDHP for distributed real-time databases. Finally, through a series of simulation studies, it shows that using the new concurrency control protocol the performance of distributed real-time databases can be much improved.展开更多
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors i...Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.展开更多
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo...The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systema...In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.展开更多
The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the...The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the major design issues of the DDBMS. In this paper, we propose new approach that integrates both fragmentation and data allocation in one strategy based on high performance clustering technique and transaction processing cost functions. This new approach achieves efficiently and effectively the objectives of data fragmentation, data allocation and network sites clustering. The approach splits the data relations into pair-wise disjoint fragments and determine whether each fragment has to be allocated or not in the network sites, where allocation benefit outweighs the cost depending on high performance clustering technique. To show the performance of the proposed approach, we performed experimental studies on real database application at different networks connectivity. The obtained results proved to achieve minimum total data transaction costs between different sites, reduced the amount of redundant data to be accessed between these sites and improved the overall DDBMS performance.展开更多
Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost prob...Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFA1604703)the National Natural Science Foundation of China(No.12375189)the National Key Research and Development Program of China(No.2021YFA1601300)。
文摘Waveform generation and digitization play essential roles in numerous physics experiments.In traditional distributed systems for large-scale experiments,each frontend node contains an FPGA for data preprocessing,which interfaces with various data converters and exchanges data with a backend central processor.However,the streaming readout architecture has become a new paradigm for several experiments benefiting from advancements in data transmission and computing technologies.This paper proposes a scalable distributed waveform generation and digitization system that utilizes fiber optical connections for data transmission between frontend nodes and a central processor.By utilizing transparent transmission on top of the data link layer,the clock and data ports of the converters in the frontend nodes are directly mapped to the FPGA firmware at the backend.This streaming readout architecture reduces the complexity of frontend development and maintains the data conversion in proximity to the detector.Each frontend node uses a local clock for waveform digitization.To translate the timing information of events in each channel into the system clock domain within the backend central processing FPGA,a novel method is proposed and evaluated using a demonstrator system.
基金This research was funded by“Chunhui Program”Collaborative Scientific Research Project of the Ministry of Education of the People’s Republic of China(Project No.HZKY20220242)the S&T Program of Hebei(Project No.225676163GH).
文摘Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%.
基金Project(20030533011)supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.
文摘This article presents information on the distribution of Ferula tadshikorum Pimenov species in the botanical—geographical region of Uzbekistan, based on data collected from available resources, including international sites, and databases, completed papers and directly conducted field studies. At the same time, under the circumstance that the natural area is directly getting smaller, the necessity and relevance of the thesis work on the evaluation of species’ natural reserves and the evaluation of the modern situations are demonstrated through examples. The Surkhandarya region is considered to have the largest number of plant species in Uzbekistan, and it is also distinguished by the variety of species. According to the location of the botanical-geographical regions of Uzbekistan, the territory of the Surkhandarya region is divided into five botanical-geographical regions (BGR). The 5 × 5 km2 grid system map includes 882 cells. Surkhan-Sherabod (BGR), Baisun (BGR), Sangardak-Topalang (BGR), Babatag (BGR), and Kuhitang (BGR) corresponded to these. Simultaneously, the 5 × 5 km2 grid system map of Uzbekistan’s flora in the Surkhandarya region revealed the presence of F. tadshikorum in 109 indices. On the territory of the region, the botanic-geographic region mainly includes the F. tadshikorum, Babatag (BGR), Baisun (BGR), and Kohitang (BGR) indices. The natural resources of F. tadshikorum in these areas were also analyzed.
基金supported by the National Natural Science Foundation of China(No.62302242)the China Postdoctoral Science Foundation(No.2023M731802).
文摘The EU’s Artificial Intelligence Act(AI Act)imposes requirements for the privacy compliance of AI systems.AI systems must comply with privacy laws such as the GDPR when providing services.These laws provide users with the right to issue a Data Subject Access Request(DSAR).Responding to such requests requires database administrators to identify information related to an individual accurately.However,manual compliance poses significant challenges and is error-prone.Database administrators need to write queries through time-consuming labor.The demand for large amounts of data by AI systems has driven the development of NoSQL databases.Due to the flexible schema of NoSQL databases,identifying personal information becomes even more challenging.This paper develops an automated tool to identify personal information that can help organizations respond to DSAR.Our tool employs a combination of various technologies,including schema extraction of NoSQL databases and relationship identification from query logs.We describe the algorithm used by our tool,detailing how it discovers and extracts implicit relationships from NoSQL databases and generates relationship graphs to help developers accurately identify personal data.We evaluate our tool on three datasets,covering different database designs,achieving an F1 score of 0.77 to 1.Experimental results demonstrate that our tool successfully identifies information relevant to the data subject.Our tool reduces manual effort and simplifies GDPR compliance,showing practical application value in enhancing the privacy performance of NOSQL databases and AI systems.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant No.KFU242068).
文摘Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks.
基金supported by the Student Scheme provided by Universiti Kebangsaan Malaysia with the Code TAP-20558.
文摘A data lake(DL),abbreviated as DL,denotes a vast reservoir or repository of data.It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured,structured,and unstructured information.These systems use a flat architecture and run different types of data analytics.NoSQL databases are nontabular and store data in a different manner than the relational table.NoSQL databases come in various forms,including key-value pairs,documents,wide columns,and graphs,each based on its data model.They offer simpler scalability and generally outperform traditional relational databases.While NoSQL databases can store diverse data types,they lack full support for atomicity,consistency,isolation,and durability features found in relational databases.Consequently,employing machine learning approaches becomes necessary to categorize complex structured query language(SQL)queries.Results indicate that the most frequently used automatic classification technique in processing SQL queries on NoSQL databases is machine learning-based classification.Overall,this study provides an overview of the automatic classification techniques used in processing SQL queries on NoSQL databases.Understanding these techniques can aid in the development of effective and efficient NoSQL database applications.
文摘The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金Project supported by National Natural Science Foundation ofChina (Grant No .60203017) Defense Pre-research Projectof the"Tenth Five-Year-Plan"of China (Grant No .413150403)
文摘Recovery performance in the event of failures is very important for distributed real-time database systems. This paper presents a time-cognizant logging-based crash recovery scheme (TCLCRS) that aims at distributed real-time databases, which adopts a main memory database as its ground support. In our scheme, each site maintains a real-time log for local transactions and the subtransactions, which execute at the site, and execte local checkpointing independently. Log records are stored in non-volatile high- speed store, which is divided into four different partitions based on transaction classes. During restart recovery after a site crash, partitioned crash recovery strategy is adopted to ensure that the site can be brought up before the entire local secondary database is reloaded in main memory. The partitioned crash recovery strategy not only guarantees the internal consistency to be recovered, but also guarantee the temporal consistency and recovery of the sates of physical world influenced by uncommitted transactions. Combined with two- phase commit protocol, TCLCRS can guarantee failure atomicity of distributed real-time transactions.
文摘Most of the proposed concurrency control protocols for real time database systems are based on serializability theorem. Owing to the unique characteristics of real time database applications and the importance of satisfying the timing constraints of transactions, serializability is too strong as a correctness criterion and not suitable for real time databases in most cases. On the other hand, relaxed serializability including epsilon serializability and similarity serializability can allow more real time transactions to satisfy their timing constraints, but database consistency may be sacrificed to some extent. We thus propose the use of weak serializability(WSR) that is more relaxed than conflicting serializability while database consistency is maintained. In this paper, we first formally define the new notion of correctness called weak serializability. After the necessary and sufficient conditions for weak serializability are shown, corresponding concurrency control protocol WDHP(weak serializable distributed high priority protocol) is outlined for distributed real time databases, where a new lock mode called mask lock mode is proposed for simplifying the condition of global consistency. Finally, through a series of simulation studies, it is shown that using the new concurrency control protocol the performance of distributed real time databases can be greatly improved.
基金the National Natural Science Foundation of China and the Commission of Science,Technokgy and Industry for National Defense
文摘This paper formally defines and analyses the new notion of correctness called quasi serializability, and then outlines corresponding concurrency control protocol QDHP for distributed real-time databases. Finally, through a series of simulation studies, it shows that using the new concurrency control protocol the performance of distributed real-time databases can be much improved.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
基金financial supports from the National Natural Science Foundation of China(NSFC)(No.61922033&U22A20206)Zhejiang Provincial Market Supervision Bureau Young Eagle Plan project under Grant CY2022228.
文摘Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields.
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
文摘The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
文摘In the evolving landscape of software engineering, Microservice Architecture (MSA) has emerged as a transformative approach, facilitating enhanced scalability, agility, and independent service deployment. This systematic literature review (SLR) explores the current state of distributed transaction management within MSA, focusing on the unique challenges, strategies, and technologies utilized in this domain. By synthesizing findings from 16 primary studies selected based on rigorous criteria, the review identifies key trends and best practices for maintaining data consistency and integrity across microservices. This SLR provides a comprehensive understanding of the complexities associated with distributed transactions in MSA, offering actionable insights and potential research directions for software architects, developers, and researchers.
文摘The efficiency and performance of Distributed Database Management Systems (DDBMS) is mainly measured by its proper design and by network communication cost between sites. Fragmentation and distribution of data are the major design issues of the DDBMS. In this paper, we propose new approach that integrates both fragmentation and data allocation in one strategy based on high performance clustering technique and transaction processing cost functions. This new approach achieves efficiently and effectively the objectives of data fragmentation, data allocation and network sites clustering. The approach splits the data relations into pair-wise disjoint fragments and determine whether each fragment has to be allocated or not in the network sites, where allocation benefit outweighs the cost depending on high performance clustering technique. To show the performance of the proposed approach, we performed experimental studies on real database application at different networks connectivity. The obtained results proved to achieve minimum total data transaction costs between different sites, reduced the amount of redundant data to be accessed between these sites and improved the overall DDBMS performance.
文摘Cell-free systems significantly improve network capacity by enabling joint user service without cell boundaries,eliminating intercell interference.However,to satisfy further capacity demands,it leads to high-cost problems of both hardware and power consumption.In this paper,we investigate multiple reconfigurable intelligent surfaces(RISs)aided cell-free systems where RISs are introduced to improve spectrum efficiency in an energy-efficient way.To overcome the centralized high complexity and avoid frequent information exchanges,a cooperative distributed beamforming design is proposed to maximize the weighted sum-rate performance.In particular,the alternating optimization method is utilized with the distributed closed-form solution of active beamforming being derived locally at access points,and phase shifts are obtained centrally based on the Riemannian conjugate gradient(RCG)manifold method.Simulation results verify the effectiveness of the proposed design whose performance is comparable to the centralized scheme and show great superiority of the RISs-aided system over the conventional cellular and cell-free system.