期刊文献+
共找到291,977篇文章
< 1 2 250 >
每页显示 20 50 100
A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets
1
作者 Khuram Ali Khan Saba Mubeen Ishfaq +1 位作者 Atiqe Ur Rahman Salwa El-Morsy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期501-530,共30页
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP... Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison. 展开更多
关键词 Hypersoft set Pythagorean fuzzy hypersoft set computational complexity multi-attribute decision-making optimization similarity measures uncertainty
在线阅读 下载PDF
Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets,Aggregation Operators and Basic Uncertainty Information Granule
2
作者 Anastasios Dounis Ioannis Palaiothodoros Anna Panagiotou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期759-811,共53页
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to... Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data. 展开更多
关键词 Medical diagnosis multi-attribute group decision-making(MAGDM) q-ROFS IVq-ROFS BUI aggregation operators similarity measures inverse score function
在线阅读 下载PDF
Healthcare providers’perspectives on factors influencing their critical care decision-making during the COVID-19 pandemic:An international pilot survey
3
作者 Sonali Vadi Neha Sanwalka Pramod Thaker 《World Journal of Critical Care Medicine》 2025年第1期100-110,共11页
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu... BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being. 展开更多
关键词 SURVEY Clinical decision-making COVID-19 pandemic
在线阅读 下载PDF
Overview and Prospect of Distributed Energy P2P Trading
4
作者 Jiajia Liu Mingxing Tian Xusheng Mao 《Energy Engineering》 EI 2025年第1期379-404,共26页
After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally alte... After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field. 展开更多
关键词 distributed energy P2P market mechanisms classification and comparison
在线阅读 下载PDF
Voices that matter:The impact of patient-reported outcome measures on clinical decision-making
5
作者 Naveen Jeyaraman Madhan Jeyaraman +2 位作者 Swaminathan Ramasubramanian Sangeetha Balaji Sathish Muthu 《World Journal of Methodology》 2025年第2期54-61,共8页
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati... The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings. 展开更多
关键词 Patient-reported outcome measures Clinical decision-making Patient-centered care Healthcare technology Data management Policy development
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
6
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
The relationship between proxy decision-making content and cues by families of patients with malignant brain tumor: A descriptive qualitative study
7
作者 Runa Tokunaga Fumiyo Ishikawa 《International Journal of Nursing Sciences》 2025年第2期169-175,共7页
Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues le... Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions. 展开更多
关键词 Brain neoplasms FAMILY Nurses CUES Proxy decision-making
在线阅读 下载PDF
COVID-19 emergency decision-making using q-rung linear diophantine fuzzy set,differential evolutionary and evidential reasoning techniques
8
作者 G Punnam Chander Sujit Das 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期182-206,共25页
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r... In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments. 展开更多
关键词 COVID-19 q-rung linear diophantine fuzzy set differential evolutionary evidential reasoning decision-making
在线阅读 下载PDF
Distributed bearing-only target tracking algorithm based on variational Bayesian inference under random measurement anomalies
9
作者 YANG Haoran CHEN Yu +1 位作者 HU Zhentao JIA Haoqian 《High Technology Letters》 2025年第1期86-94,共9页
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ... A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios. 展开更多
关键词 bearing-only target tracking(BOTT) variational Bayesian inference(VBI) Student-t distribution cubature Kalman filter(CKF) distributed fusion
在线阅读 下载PDF
Centralized-Distributed Scheduling Strategy of Distribution Network Based on Multi-Temporal Hierarchical Cooperative Game
10
作者 Guoqing Li Jianing Li +1 位作者 Kefei Yan Jing Bian 《Energy Engineering》 2025年第3期1113-1136,共24页
A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimizatio... A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization interaction in distribution network transformer areas,as well as the problem of significant photovoltaic curtailment due to the inability to consume photovoltaic power locally.A scheduling architecture combiningmulti-temporal scales with a three-level decision-making hierarchy is established:the overall approach adopts a centralized-distributed method,analyzing the operational characteristics and interaction relationships of the distribution network center layer,cluster layer,and transformer area layer,providing a“spatial foundation”for subsequent optimization.The optimization process is divided into two stages on the temporal scale:in the first stage,based on forecasted electricity load and demand response characteristics,time-of-use electricity prices are utilized to formulate day-ahead optimization strategies;in the second stage,based on the charging and discharging characteristics of energy storage vehicles and multi-agent cooperative game relationships,rolling electricity prices and optimal interactive energy solutions are determined among clusters and transformer areas using the Nash bargaining theory.Finally,a distributed optimization algorithm using the bisection method is employed to solve the constructed model.Simulation results demonstrate that the proposed optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy. 展开更多
关键词 Photovoltaic consumption distribution area optimal scheduling cooperative game
在线阅读 下载PDF
A Trusted Distributed Oracle Scheme Based on Share Recovery Threshold Signature
11
作者 Shihao Wang Xuehui Du +4 位作者 Xiangyu Wu Qiantao Yang Wenjuan Wang Yu Cao Aodi Liu 《Computers, Materials & Continua》 2025年第2期3355-3379,共25页
With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become ... With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness. 展开更多
关键词 Blockchain threshold signature distributed oracle data submission share recovery
在线阅读 下载PDF
Distributed asynchronous double accelerated optimization for ethylene plant considering delays
12
作者 Ting Wang Zhongmei Li Wenli Du 《Chinese Journal of Chemical Engineering》 2025年第2期245-250,共6页
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela... Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm. 展开更多
关键词 Asynchronous distributed optimization Plant-wide optimization Heavy ball Nesterov Inequality constraints
在线阅读 下载PDF
DRG-DCC:A Driving Risk Gaming Based Distributed Congestion Control Method for C-V2X Technology
13
作者 Lingqiu Zeng Peibing Sa +4 位作者 Qingwen Han Lei Ye Letian Yang Cheng Zhang Jiqiang Cheng 《Computers, Materials & Continua》 2025年第5期2059-2086,共28页
Congestion control is an inherent challenge of V2X(Vehicle to Everything)technologies.Due to the use of a broadcasting mechanism,channel congestion becomes severe with the increase in vehicle density.The researchers s... Congestion control is an inherent challenge of V2X(Vehicle to Everything)technologies.Due to the use of a broadcasting mechanism,channel congestion becomes severe with the increase in vehicle density.The researchers suggested reducing the frequency of packet dissemination to relieve congestion,which caused a rise in road driving risk.Obviously,high-risk vehicles should be able to send messages timely to alarm surrounding vehicles.Therefore,packet dissemination frequency should be set according to the corresponding vehicle’s risk level,which is hard to evaluate.In this paper,a two-stage fuzzy inference model is constructed to evaluate a vehicle’s risk level,while a congestion control algorithm DRG-DCC(Driving Risk Game-Distributed Congestion Control)is proposed.Moreover,HPSO is employed to find optimal solutions.The simulation results show that the proposed method adjusts the transmission frequency based on driving risk,effectively striking a balance between transmission delay and channel busy rate. 展开更多
关键词 distributed congestion control fuzzy inference driving risk evaluation game theory Nash equilibrium
在线阅读 下载PDF
Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on theModified IEEE 33-Bus System
14
作者 Haoyuan Li Lingling Li 《Energy Engineering》 2025年第4期1337-1358,共22页
Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution netwo... Rational distribution network planning optimizes power flow distribution,reduces grid stress,enhances voltage quality,promotes renewable energy utilization,and reduces costs.This study establishes a distribution network planning model incorporating distributed wind turbines(DWT),distributed photovoltaics(DPV),and energy storage systems(ESS).K-means++is employed to partition the distribution network based on electrical distance.Considering the spatiotemporal correlation of distributed generation(DG)outputs in the same region,a joint output model of DWT and DPV is developed using the Frank-Copula.Due to the model’s high dimensionality,multiple constraints,and mixed-integer characteristics,bilevel programming theory is utilized to structure the model.The model is solved using a mixed-integer particle swarmoptimization algorithm(MIPSO)to determine the optimal location and capacity of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.The proposed bilevel planning method for distribution networks is validated through simulations on the modified IEEE 33-bus system.The results demonstrate significant improvements,with the proposedmethod reducing the annual comprehensive cost by 41.65%and 13.98%,respectively,compared to scenarios without DG and ESS or with only DG integration.Furthermore,it reduces the daily average voltage deviation by 24.35%and 10.24%and daily network losses by 55.72%and 35.71%. 展开更多
关键词 distribution network planning frank-copula joint output model bilevel programming theory
在线阅读 下载PDF
Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids
15
作者 Xing Huang Yulin Chen +4 位作者 Donglian Qi Yunfeng Yan Shaohua Yang Ying Weng Xianbo Wang 《Global Energy Interconnection》 2025年第1期1-12,共12页
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam... Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks. 展开更多
关键词 MICROGRIDS distributed secondary control Self-triggered control Hash algorithms False data injection attack
在线阅读 下载PDF
Design and optimization of steam power systems in industrial parks based on the distributed steam turbine system
16
作者 Lingwei Zhang Ziyuan Cui Yufei Wang 《Chinese Journal of Chemical Engineering》 2025年第1期259-272,共14页
Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple ... Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines. 展开更多
关键词 Industrial parks Steam power systems distributed steam turbine system Mixed-integer nonlinear programming OPTIMIZATION ENTHALPY
在线阅读 下载PDF
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
17
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 distributed energy management Dynamic pricing Multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Vacuum Loss State Monitoring of Aerospace Vacuum Pressure Vessels Based on Quasi-Distributed FBG Sensing Technology
18
作者 Zhe Gong Ge Yan +4 位作者 Jie Ma Chang-Lin Yan Fu-Kang Shen Hu Li Hua-Ping Wang 《Structural Durability & Health Monitoring》 2025年第3期473-498,共26页
Vacuum pressure vessels are one of the critical components in the aerospace field,and understanding the mechanical behavior feature is particularly important for safe operation.Therefore,it is meaningful to obtain the... Vacuum pressure vessels are one of the critical components in the aerospace field,and understanding the mechanical behavior feature is particularly important for safe operation.Therefore,it is meaningful to obtain the stress and strain distributions in the key positions of the vacuum tank,which can contribute to the safe performance assessment,operation efficiency,and fault analysis.Hence,this paper provides the distribution characteristics and variation rules of stress and tank strain of vacuum under different internal and external pressures through the elastic theoretical analysis and iteration method.The quasi-distributed fiber Bragg grating(FBG)sensors and the layout on the vacuum pressure vessel have thus been designed to monitor the whole vacuum extraction and loss process under three different loading conditions.Data analysis based on the theoretical results and monitoring information has further been conducted to validate the effectiveness of the proposed monitoring method for possible leakage defects.Research results indicate that the continuously monitoring data can quite sensitively and accurately characterize the microstrain variation features of the vacuum tank at different vacuum stages,and the loading-induced vibration effect should be carefully considered during the data interpretation.The study can provide scientific support for the vacuum loss state monitoring and safe performance assessment of the vacuum pressure vessels. 展开更多
关键词 Vacuum loss monitoring quasi-distributed FBG sensors theoretical and numerical analysis strain distribution vacuum pressure
在线阅读 下载PDF
Identification of defects in underground structures using machine learning aided distributed fiber optic sensing
19
作者 Shaoqun Lin Hongjiang Ye +2 位作者 Daoyuan Tan Jing Wang Jianhua Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2194-2207,共14页
Despite the extensive use of distributed fiber optic sensing(DFOS)in monitoring underground structures,its potential in detecting structural anomalies,such as cracks and cavities,is still not fully understood.To contr... Despite the extensive use of distributed fiber optic sensing(DFOS)in monitoring underground structures,its potential in detecting structural anomalies,such as cracks and cavities,is still not fully understood.To contribute to the identification of defects in underground structures,this study conducted a four-point bending test of a reinforced concrete(RC)beam and uniaxial loading tests of an RC specimen with local cavities.The experimental results revealed the disparity in DFOS strain spike profiles between these two structural anomalies.The effectiveness of DFOS in the quantification of crack opening displacement(COD)was also demonstrated,even in cases where perfect bonding was not achievable between the cable and structures.In addition,DFOS strain spikes observed in two diaphragm wall panels of a twin circular shaft were also reported.The most probable cause of those spikes was identified as the mechanical behavior associated with local concrete contamination.With the utilization of the strain profiles obtained from laboratory tests and field monitoring,three types of multi-classifiers,based on support vector machine(SVM),random forest(RF),and backpropagation neural network(BP),were employed to classify strain profiles,including crack-induced spikes,non-crack-induced spikes,and non-spike strain profiles.Among these classifiers,the SVM-based classifier exhibited superior performance in terms of accuracy and model robustness.This finding suggests that the SVM-based classifier holds promise as a potential solution for the automatic detection and classification of defects in underground structures during long-term monitoring. 展开更多
关键词 Geotechnical monitoring distributed fiber optic sensing(DFOS) Strain spikes Cracks DEFECTS Support vector machine
在线阅读 下载PDF
Hybrid DF and SIR Forwarding Strategy in Conventional and Distributed Alamouti Space-Time Coded Cooperative Networks
20
作者 Slim Chaoui Omar Alruwaili +1 位作者 Faeiz Alserhani Haifa Harrouch 《Computer Modeling in Engineering & Sciences》 2025年第2期1933-1954,共22页
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-... In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation. 展开更多
关键词 Cooperative communication soft information relaying soft symbols modeling cooperative diversity gain distributed Alamouti space-time code
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部