In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In...In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.展开更多
AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surfa...AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is nume...As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is numerically simulated in atmospheric pressure helium mixed with trace nitrogen based on a fluid model.With varying relative position(phase difference(Δφ))of the wavy surfaces,there is a positive discharge and a negative discharge per voltage cycle,each of which consists of a pulse stage and a hump stage.For the pulse stage,maximal current increases with increasingΔφ.Results show that DBD with the wavy surfaces appears as discrete micro-discharges(MDs),which are self-organized to different patterns with varyingΔφ.The MDs are vertical and uniformly-spaced withΔφ=0,which are self-organized in pairs withΔφ=π/4.These MD pairs are merged into some bright wide MDs withΔφ=π/2.In addition,narrow MDs appear between tilted wide MDs withΔφ=3π/4.WithΔφ=π,the pattern is composed of wide and narrow MDs,which are vertical and appear alternately.To elucidate the formation mechanism of the patterns with differentΔφ,temporal evolutions of electron density and electric field are investigated for the positive discharge.Moreover,surface charge on the wavy dielectric layers has also been compared with differentΔφ.展开更多
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activ...Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.展开更多
The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the rand...The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra...Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.展开更多
In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface h...In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.展开更多
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the...The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.展开更多
The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu ...The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu field observation station(44°25'N,122°52'E,184 m elevation) of Coordinated Enhanced Observing Period(CEOP),where the land cover is cropland and grassland.In the whole year of 2003,the canopy height and the leaf area index was variable.During non-growth period,the surface would become bare,while during the growth period,the canopy height could reach 2.0 m high over cropland and 0.8 m high over grassland,respectively,and max leaf area index could reach 4.2 and 2.4,respectively.The model was initialized with measurement and driven by half-hourly atmospheric observations.The simulation values for 2003 were compared against measurements.Results show that the model is of a good ability of simulating the hourly latent heat(LE),sensible heat(H),CO2 flux and temperature during the growth period.Moreover,the daily LE,H and CO2 flux simulated by SiB2 could reflect their yearly change reasonably.However,the model may overestimate the H generally.展开更多
We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in ...We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.展开更多
A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and com...A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.展开更多
A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and tw...A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.展开更多
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb...To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.展开更多
基金supported by Ministry of Science and Technology of the People’s Republic of China(2020YFB1808101)the Project“5G evolution wireless air interface intelligent R&D and verification public platform project”supported by Ministry of Industry and Information Technology of the People’s Republic of China(TC220A04M).
文摘In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Degree and Postgraduate Education Teaching Reform Project of Jiangxi Province(No.JXYJG-2020-026).
文摘AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12375250,11875121,51977057,11805013)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2020201025 and A2022201036)+3 种基金the Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project(Grant No.22567634H)the Funds for Distinguished Young Scientists of Hebei Province,China(Grant No.A2012201045)the Natural Science Interdisciplinary Research Program of Hebei University(Grant Nos.DXK201908 and DXK202011)the Post-graduate’s Innovation Fund Project of Hebei University(Grant No.HBU2022bs004)。
文摘As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is numerically simulated in atmospheric pressure helium mixed with trace nitrogen based on a fluid model.With varying relative position(phase difference(Δφ))of the wavy surfaces,there is a positive discharge and a negative discharge per voltage cycle,each of which consists of a pulse stage and a hump stage.For the pulse stage,maximal current increases with increasingΔφ.Results show that DBD with the wavy surfaces appears as discrete micro-discharges(MDs),which are self-organized to different patterns with varyingΔφ.The MDs are vertical and uniformly-spaced withΔφ=0,which are self-organized in pairs withΔφ=π/4.These MD pairs are merged into some bright wide MDs withΔφ=π/2.In addition,narrow MDs appear between tilted wide MDs withΔφ=3π/4.WithΔφ=π,the pattern is composed of wide and narrow MDs,which are vertical and appear alternately.To elucidate the formation mechanism of the patterns with differentΔφ,temporal evolutions of electron density and electric field are investigated for the positive discharge.Moreover,surface charge on the wavy dielectric layers has also been compared with differentΔφ.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
基金supported by the Project 42374170,XDA0430101.and 2022YFF0706200.
文摘Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.
基金Supported by Special Fund of Taishan Scholars Project(Grant No.tsqn202211179)National Natural Science Foundation of China(Grant No.52105457)+2 种基金Shandong Provincial Young Talent of Lifting Engineering for Science and Technology(Grant No.SDAST2021qt12)National Natural Science Foundation of China(Grant No.52375447)China Postdoctoral Science Foundation Funded Project(Grant No.2023M732826).
文摘The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3901402)the Fundamental Research Funds for the Central Universities (Project No. 2022CDJKYJH037)。
文摘Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.
基金appreciate the support of the Key Laboratory of Mechanical Structure Optimization&Material Application Technology of Luzhou(No.SCHYZSA-2022-02)the Scientific Research and Innovation Team Program of Sichuan University of Science and Technology(No.SUSE652A004)+1 种基金the Key Laboratory of Intelligent Manufacturing of Construction Machinery Project(No.IMCM202103)the Panzhihua Key Laboratory of Advanced Manufacturing Technology Open Fund Project(No.2022XJZD01)。
文摘In the present work,the laminar plasma surface hardening method is employed to enhance the service life of metal components fabricated from 65 Mn steel.The mechanical and wear behaviors of the laminar plasma surface hardened 65 Mn steel were analyzed.The martensite transition transformation of the temperature of the laminar plasma-hardened 65 ferrite Mn steel was determined by a thermal-solid coupling model.Based on the orthogonal experimental results,the optimal hardening parameters were confirmed.The scanning velocity,quenching distance and arc current are 130 mm/min,50 mm and 120 A,respectively.The pearlites and ferrites are transformed into martensites in the hardened zone,while the ratio of martensite in the heataffected zone decreases with the increase in the hardening depth.Compared to the untreated 65Mn steel,the average hardness increases from 220 HV_(0.2)to 920 HV_(0.2)in the hardened zone and the corresponding absorbed power increases from 118.7 J to 175.5 J.At the same time,the average coefficient of friction(COF)decreases from 0.763 to 0.546,and the wear rate decreases from 5.39×10^(-6)mm^(3)/(N·m)to 2.95×10^(-6)mm^(3)/(N·m),indicating that the wear resistance of 65Mn steel could be significantly improved by using laminar surface hardening.With the same hardening parameters,the depth and width of the hardened zone predicted by the thermal-solid coupling model are 1.85 mm and 11.20 mm,respectively,which are in accordance with the experimental results;depth is 1.83 mm and width is 11.15 mm.In addition,the predicted hardness distributions of the simulation model are in accordance with the experimental results.These results indicate that the simulation model could effectively predict the microstructure characteristics of 65 Mn steel.
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
基金This work was jointly supported by the National Natural Science Foundation of China projects[grant numbers 42305178 and U2344224]the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
基金financially supported by the National Natural Science Foundation of China(Nos.41104069 and 41274124)the National 973 Project(Nos.2014CB239006 and 2011CB202402)+1 种基金the Shandong Natural Science Foundation of China(No.ZR2011DQ016)Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.
基金supported by the National Basic Research Program of China (2006CB400506)
文摘The modeling ability of a stand-alone version of the Simple Biosphere Model 2(SiB2) was tested mainly through diagnosing the simulated latent heat(LE),sensible heat(H),CO2 flux,and air temperature at the Tongyu field observation station(44°25'N,122°52'E,184 m elevation) of Coordinated Enhanced Observing Period(CEOP),where the land cover is cropland and grassland.In the whole year of 2003,the canopy height and the leaf area index was variable.During non-growth period,the surface would become bare,while during the growth period,the canopy height could reach 2.0 m high over cropland and 0.8 m high over grassland,respectively,and max leaf area index could reach 4.2 and 2.4,respectively.The model was initialized with measurement and driven by half-hourly atmospheric observations.The simulation values for 2003 were compared against measurements.Results show that the model is of a good ability of simulating the hourly latent heat(LE),sensible heat(H),CO2 flux and temperature during the growth period.Moreover,the daily LE,H and CO2 flux simulated by SiB2 could reflect their yearly change reasonably.However,the model may overestimate the H generally.
基金sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences No.KZCX2-YW-132)the Important National Science and Technology Specific Projects(No.2008ZX05008-006)the National Natural Science Foundation of China Nos.41074033,40721003,40830315,and 40874041)
文摘We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.
基金Project(51374020)supported by the National Natural Science Foundation of China
文摘A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.
文摘A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.
基金funding support from the Fundamental Research Funds for the Central Universities(Grant No.2023JBZY024)the National Natural Science Foundation of China(Grant Nos.52208382 and 52278387).
文摘To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design.