期刊文献+
共找到12,321篇文章
< 1 2 250 >
每页显示 20 50 100
Focus on the catalysts to resist the phosphate poisoning in high-temperature proton exchange membrane fuel cells
1
作者 Liyuan Gong Li Tao +2 位作者 Lei Wang Xian-Zhu Fu Shuangyin Wang 《Chinese Journal of Catalysis》 2025年第1期155-176,共22页
Investigating highly effective electrocatalysts for high-temperature proton exchange membrane fuel cells(HT-PEMFC)requires the resistance to phosphate acid(PA)poisoning at cathodic oxygen reduction reaction(ORR).Recen... Investigating highly effective electrocatalysts for high-temperature proton exchange membrane fuel cells(HT-PEMFC)requires the resistance to phosphate acid(PA)poisoning at cathodic oxygen reduction reaction(ORR).Recent advancements in catalysts have focused on alleviating phosphoric anion adsorption on Pt-based catalysts with modified electronic structure or catalytic interface and developing Fe-N-C based catalysts with immunity of PA poisoning.Fe-N-C-based catalysts have emerged as promising alternatives to Pt-based catalysts,offering significant potential to overcome the characteristic adsorption of phosphate anion on Pt.An overview of these developments provides insights into catalytic mechanisms and facilitates the design of more efficient catalysts.This review begins with an exploration of basic poisoning principles,followed by a critical summary of characterization techniques employed to identified the underlying mechanism of poisoning effect.Attention is then directed to endeavors aimed at enhancing the HT-PEMFC performance by well-designed catalysts.Finally,the opportunities and challenges in developing the anti-PA poisoning strategy and practical HT-PEMFC is discussed.Through these discussions,a comprehensive understanding of PA-poisoning bottlenecks and inspire future research directions is aim to provided. 展开更多
关键词 fuel cell High-temperature Phosphate acid poisoning Activitydegradation Electrocatalystdesign
在线阅读 下载PDF
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells
2
作者 Lei Zhang Yuchen Dong +6 位作者 Lubing Li Yuchuan Shi Yan Zhang Liting Wei Chung-Li Dong Zhiqun Lin Jinzhan Su 《Nano-Micro Letters》 2025年第4期275-289,共15页
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a... The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices. 展开更多
关键词 Doping-adsorption-pyrolysis Dual-atom catalysts Oxygen reduction reaction fuel cells
在线阅读 下载PDF
Synthesis of intermetallic PtCo fuel cell catalysts from bimetallic core@shell structured nanoparticles
3
作者 Le Zhang Lei Tong +3 位作者 Shuai Li Chang-Song Ma Kun-Ze Xue Hai-Wei Liang 《Journal of Energy Chemistry》 2025年第2期1-6,I0001,共7页
The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming... The high activity and stability of intermetallic PtCo nanocatalysts toward oxygen reduction reaction make them a top candidate as low-Pt cathode catalysts in proton exchange membrane fuel cells(PEMFCs).However,forming intermetallic structures typically requires high-temperature annealing,posing a challenge for achieving well-size control and highly ordered structures.Here we report the design and synthesis of bimetallic co re@shell structured precursors for affording high-performance intermetallic PtCo catalysts.The fabrication of the core@shell precursor involves using a molecular ligand containing both sulfur and oxygen donors to selectively bind with Pt colloidal nanoparticles as the core and chelate Co ions as the shell.During high-temperature annealing,the ligand transforms into carbon coatings around alloy nanoparticles,preventing particle sintering;meanwhile,Co ions in the shell can easily diffuse into the Pt core,which helps to increase the thermodynamic driving force for forming intermetallic structures.These benefits enable us to obtain the catalyst with finely dispersed nanoparticles(~3.5 nm)and a high ordering degree of 72%.With 0.1 mgPt/cm^(2)cathode loading,the catalyst delivers superior performance and durability in PEMFCs,showing an initial mass activity of 0.56 A/mgPt,an initial power density of 1.05 W/cm^(2)at 0.67 V(H_(2)-air),and a voltage loss of 26 mV at 0.8 A/cm^(2)after the accelerated durability test. 展开更多
关键词 Intermetallic PtCo Oxygen reduction reaction Bimetallic structure fuel cells
在线阅读 下载PDF
Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems
4
作者 Venkitesan Sakthivel Dong Jin Yoo 《Journal of Energy Chemistry》 2025年第1期356-368,共13页
Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system,with the solid-electrolyte membrane playing a crucial role in its overall performance.Currently,sulfonated poly(1,4-phenylene... Proton exchange membrane fuel cells (PEMFCs) provide an appealing sustainable energy system,with the solid-electrolyte membrane playing a crucial role in its overall performance.Currently,sulfonated poly(1,4-phenylene ether-ether sulfone)(SPEES),an aromatic hydrocarbon polymer,has garnered considerable attention as an alternative to Nafion polymers.However,the long-term durability and stability of SPEES present a significant challenge.In this context,we introduce a potential solution in the form of an additive,specifically a core–shell-based amine-functionalized iron titanate (A–Fe_(2)TiO_(5)),which holds promise for improving the lifetime,proton conductivity,and power density of SPEES in PEMFCs.The modified SPEES/A–Fe_(2)TiO_(5)composite membranes exhibited notable characteristics,including high water uptake,enhanced thermomechanical stability,and oxidative stability.Notably,the SPEES membrane loaded with 1.2 wt%of A–Fe_(2)TiO_(5)demonstrates a maximum proton conductivity of 155 mS ccm^(-1),a twofold increase compared to the SPEES membrane,at 80°C under 100%relative humidity (RH).Furthermore,the 1.2 wt%of A–Fe_(2)TiO_(5)/SPEES composite membranes exhibited a maximum power density of 397.37 mW cm^(-2)and a current density of 1148 mA cm^(-2)at 60°C under 100%RH,with an opencircuit voltage decay of 0.05 m V/h during 103 h of continuous operation.This study offers significant insights into the development and understanding of innovative SPEES nanocomposite membranes for PEMFC applications. 展开更多
关键词 ACID-BASE Hybrid membrane Proton conductivity Polymer electrolyte fuel cell Single-cell performance
在线阅读 下载PDF
Research on the Theory and Practice of Hydrogen Fuel Cell
5
作者 Yan Liu Lu Yin 《Journal of Electronic Research and Application》 2025年第1期263-269,共7页
Hydrogen energy is a renewable and clean resource,that can promote the transformation of energy use terminals to green and low carbon,alleviate the current problems of energy shortage,respond to China’s“double carbo... Hydrogen energy is a renewable and clean resource,that can promote the transformation of energy use terminals to green and low carbon,alleviate the current problems of energy shortage,respond to China’s“double carbon”strategy,and further implement the energy-saving and emission reduction targets.The hydrogen fuel cell is an efficient and environmentally friendly distributed power generation device,with the advantages of high energy density,zero-emission,fast charging speed,etc.,and has been widely used in the fields of new energy vehicles,electric power equipment,and portable equipment.This paper analyzes the principle and advantages of hydrogen fuel cells,analyzes the key technology system of hydrogen fuel cells and the application of artificial intelligence in hydrogen fuel cells,proposes to strengthen the research on hydrogen production technology,accelerates the technical research and transformation application of key materials and core components,formulate industrial planning scientifically and actively promote hydrogen fuel cell,and promote the transformation of scientific and technological achievements,to promote the development of the hydrogen fuel cell industry. 展开更多
关键词 Hydrogen fuel cell Power generation principle Technical system Key technology Application path
在线阅读 下载PDF
Influence of Rhamnolipids Biosurfactant on the Anodic Electrochemical Performance in Marine Sediment Microbial Fuel Cell and the Acceleration Degradation of Crude Petroleum
6
作者 HOU Luyao ZAI Xuerong +6 位作者 MENG Yao LIANG Shengkang CAO Yali CHEN Yan ZHANG Huaijing HUANG Xiang FU Yubin 《Journal of Ocean University of China》 2025年第1期139-146,共8页
Crude petroleum pollution causes some serious ecological disasters in the ocean.Marine sediment microbial fuel cells(MSMFCs)have been utilized as a novel method for in-situ degradation and a long-term power source.Her... Crude petroleum pollution causes some serious ecological disasters in the ocean.Marine sediment microbial fuel cells(MSMFCs)have been utilized as a novel method for in-situ degradation and a long-term power source.Herein,the effect of different concentrations of rhamnolipids biosurfactant on the electrochemical performance of MSMFCs anode and the higher efficiency of oil degradation are creatively investigated.The results indicate that the anode in sediment containing rhamnolipids effectively enriches the indigenous electrogenic Pseudophaeobacter and Pseudomonas,which significantly enhances the electrochemical performance of the MSMFCs.Under rhamnolipids at the concentration of 200 mg kg^(-1)in sediment,the anode specific capacitance(401.45 Fm^(-2)),exchange current density(4.87×10^(-2)mAm^(-2)),and cell maximum power density(140.24 mWm^(-2))increase by 2.50,38.65,and 2.11 times,respectively,in comparison with its natural sediment.And the oil degradation rate(40.06%)was higher than the blank(17.55%).It demonstrates that the synergistic effect between electrochemical catalytic degradation and emulsifying solubilization of rhamnolipids surfactant directly accelerates the degradation of petroleum in marine sediment,which will provide a novel method and theoretical guidance for in-situ degradation and efficient removal of crude petroleum on ocean floor. 展开更多
关键词 marine sediment microbial fuel cells petroleum pollution rhamnolipids biosurfactant electrochemical performance
在线阅读 下载PDF
Nano high-entropy oxide cathode with enhanced stability for direct borohydride fuel cells
7
作者 Lei Zhang Lingfeng Kuang +6 位作者 Lianke Zhang Wen Chu Haiying Qin Jing Zhang Junjing He Hualiang Ni Hongzhong Chi 《Journal of Energy Chemistry》 2025年第1期309-316,共8页
High-entropy materials have become high-activity electrocatalysis owing to their high-entropy effect and multiple active sites.Herein,we synthesize a series of carbon-supported nano high-entropy oxides(HEOs/C),specifi... High-entropy materials have become high-activity electrocatalysis owing to their high-entropy effect and multiple active sites.Herein,we synthesize a series of carbon-supported nano high-entropy oxides(HEOs/C),specifically (PtFeCoNiCu)O/C,using a carbothermal shock (CTS) method for application as a cathode catalyst in direct borohydride fuel cells (DBFCs).The microstructure of the prepared catalysts was characterized by X-ray photoelectron spectroscopy,X-ray absorption fine structure,and transmission electron microscopy.The prepared (PtFeCoNiCu)O/C,with particle sizes ranging from 2 to 4 nm,demonstrates 3.94 transferred electrons towards the oxygen reduction reaction in an alkaline environment,resulting in a minimal H_(2)O_(2)yield of 2.6%.Additionally,it exhibits a Tafel slope of 61 mV dec-1,surpassing that of commercial Pt/C (82 mV dec-1).Furthermore,after 40,000 cycles of cyclic voltammetry(CV) testing,the half-wave potential of (PtFeCoNiCu)O/C shows a positive shift of 3 mV,with no notable decline in the limiting current density.When (PtFeCoNiCu)O/C is used as a cathode catalyst in DBFCs,the DBFC achieves a maximum power density of 441 mW cm^(-2)at 60°C and sustains a cell voltage of approximately 0.73 V after 52 h at 30°C.These findings confirm that HEO/C is a promising cathode catalyst for DBFCs. 展开更多
关键词 High-entropy oxides Oxygen reduction reaction Carbothermal shock STABILITY Direct borohydride fuel cells
在线阅读 下载PDF
Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells:from Nano to Meter Scale Challenges
8
作者 Yang Li Ming-Shui Yao +1 位作者 Yanping He Shangfeng Du 《Nano-Micro Letters》 2025年第6期482-531,共50页
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport.They have been expected to be a future power source for portable elec... Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport.They have been expected to be a future power source for portable electronic devices.The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application,which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes.Here,we provide a comprehensive review of the progress around this technology,in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale,to catalyst design at the nanoscale,electrode structure at the micro scale and design at the millimeter scale,and finally to device fabrication at the meter scale.The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted.Finally,perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology. 展开更多
关键词 Direct formic acid fuel cell ELECTROCATALYST ELECTRODE Formic acid oxidation Mass transfer
在线阅读 下载PDF
Tailoring BaCe_(0.7)Zr_(0.1)(Dy_(0.1)|Yb_(0.1))_(0.2)O_(3-δ)electrolyte through strategic Cu doping for low temperature proton conducting fuel cells:Envisioned theoretically and experimentally
9
作者 Zaheer Ud Din Babar Muhammad Bilal Hanif +3 位作者 Yan'an Li Wan-Ting Wang Hanchen Tian Cheng-Xin Li 《Journal of Energy Chemistry》 2025年第2期692-701,I0015,共11页
This study addresses the challenge of high sintering temperatures in proton-conducting fuel cells(PCFCs)with BaCeO_(3)-doped electrolytes.We demonstrate that 1 mol%copper(Cu)doping at the B-site of BaCe_(0.7)Zr_(0.1)(... This study addresses the challenge of high sintering temperatures in proton-conducting fuel cells(PCFCs)with BaCeO_(3)-doped electrolytes.We demonstrate that 1 mol%copper(Cu)doping at the B-site of BaCe_(0.7)Zr_(0.1)(Dy_(0.1)|Yb_(0.1))_(0.2)O_(3-δ)(BCZDYb)improves sintering behavior,enabling densification at1400℃.However,Cu doping disrupts stoichiometry,creating barium vacancies and reducing protonaccepting cations,affecting overall conductivity.This mechanism is confirmed through density functional theory(DFT)calculations and various experimental techniques,including crystal structure analysis using X-ray diffraction(XRD)and morphology and elemental analysis via field emission scanning electron microscopy(FESEM)and energy-dispersive X-ray spectroscopy(EDS).Electrochemical measurements are performed using the electrochemical impedance spectroscopy(EIS).The ionic conductivity of1 mol%Cu-doped BCZDYb(BCZDYb-1)is 1.49×10^(-2)S cm^(-1)at 650℃,which is~3.58 times higher than that of BCZDYb sintered at 1200℃.The BCZDYb-1 exhibits~16 times higher grain boundary conductivity when sintered at 1400℃,compared to undoped BCZDYb.The single cell employing BCZDYb-1 as the electrolyte achieved a power density of~606 mW cm^(-2)at 550℃.These results indicate that a controlled amount of Cu doping can enhance densification while maintaining high ionic co nductivity,making it suitable for practical applications in PCFCs operating at lower temperatures. 展开更多
关键词 Proton conducting fuel cells(PCFCs) Sintering DENSIFICATION Cu-doping Electrical conductivity BaCe_(0.7)Z_(0.1)(Dy_(0.1)/Yb_(0.1))_(0.2)O_(3-δ)(BCZDYb)
在线阅读 下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
10
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
在线阅读 下载PDF
Boost the Utilization of Dense FeN_(4) Sites for High-Performance Proton Exchange Membrane Fuel Cells 被引量:1
11
作者 Yanrong Li Shuhu Yin +4 位作者 Long Chen Xiaoyang Cheng Chongtai Wang Yanxia Jiang Shigang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期398-405,共8页
Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site... Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site density(SD)and site utilization.Herein,we reported a melamine-assisted vapor deposition approach to overcome these hindrances.The melamine not only compensates for the loss of nitrogen caused by high-temperature pyrolysis but also effectively etches the carbon substrate,increasing the external surface area and mesoporous porosity of the carbon substrate.These can provide more useful area for subsequent vapor deposition on active sites.The prepared 0.20Mela-FeNC catalyst shows a fourfold higher SD value and site utilization than the FeNC without the treatment of melamine.As a result,0.20Mela-FeNC catalyst exhibits a high ORR activity with a half-wave potential(E_(1/2))of 0.861 V and 12-fold higher ORR mass activity than the FeNC in acidic media.As the cathode in a H_(2)-O_(2)PEMFCs,0.20Mela-FeNC catalyst demonstrates a high peak power density of 1.30 W cm^(-2),outstripping most of the reported Fe-N-C catalysts.The developed melamine-assisted vapor deposition approach for boosting the SD and utilization of Fe-N-C catalysts offers a new insight into high-performance ORR electrocatalysts. 展开更多
关键词 fuel cells MELAMINE oxygen reduction reaction site density UTILIZATION
在线阅读 下载PDF
New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase 被引量:1
12
作者 Chuan Zhou Xixi Wang +12 位作者 Dongliang Liu Meijuan Fei Jie Dai Daqin Guan Zhiwei Hu Linjuan Zhang Yu Wang Wei Wang Ryan O'Hayre San Ping Jiang Wei Zhou Meilin Liu Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期83-92,共10页
For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water... For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas,but also suppress the O_(2)adsorption on the electrode surface.Herein,a new electrode design concept is proposed,that may overcome this dilemma.By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode,high proton conductivity/concentration can be reached at low water content in atmosphere.In addition,the hydronation creates additional fast proton transport channel along the two-phase interface.As a result,high protonic conductivity is reached,leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes. 展开更多
关键词 CATHODE high-hydrating capability proton conductivity protonic ceramic fuel cells
在线阅读 下载PDF
From concept to commercialization:A review of tubular solid oxide fuel cell technology 被引量:1
13
作者 Ruyan Chen Yuan Gao +4 位作者 Jiutao Gao Huiyu Zhang Martin Motola Muhammad Bilal Hanif Cheng-Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期79-109,I0003,共32页
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st... The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed. 展开更多
关键词 Tubular solid oxide fuel cell Support material Geometric structure Preparation methods STACK
在线阅读 下载PDF
High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells 被引量:1
14
作者 Tong Mu Lele Wang +3 位作者 Qian Wang Yang Wu Patric Jannasch Jingshuai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期512-523,共12页
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped... This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology. 展开更多
关键词 High temperature polymer electrolyte membrane Imidazole-containing polymer Chemical stability fuel cell
在线阅读 下载PDF
Modified electronic structure and enhanced hydroxyl adsorption make quaternary Pt-based nanosheets efficient anode electrocatalysts for formic acid-/alcohol-air fuel cells 被引量:1
15
作者 Fengling Zhao Qiang Yuan +2 位作者 Siyang Nie Liang Wu Xun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期142-150,共9页
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)... Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources. 展开更多
关键词 Pt-based nanosheets Modifiedelectronic structure Enhanced hydroxyl adsorption Formicacidand alcohol oxidation Direct liquid fuel cells
在线阅读 下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
16
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
在线阅读 下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
17
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
在线阅读 下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells 被引量:1
18
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
在线阅读 下载PDF
Performance Degradation Prediction of Proton Exchange Membrane Fuel Cell Based on CEEMDAN-KPCA and DA-GRU Networks 被引量:2
19
作者 Tingwei Zhao Juan Wang +2 位作者 Jiangxuan Che Yingjie Bian Tianyu Chen 《Instrumentation》 2024年第1期51-61,共11页
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C... In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality. 展开更多
关键词 proton exchange membrane fuel cell dual-attention gated recurrent unit data-driven model time series prediction
在线阅读 下载PDF
Al^(3+) doped CeO_(2) for proton conducting fuel cells
20
作者 Sarfraz Shahzad Rasool +6 位作者 Muhammad Khalid MAKYousaf Shah Bin Zhu Jung-Sik Kim Muhammad Imran Asghar Nabeela Akbar Wenjing Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2253-2262,共10页
Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and ... Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and electrochemical properties of CeO_(2).Lattice oxygen vacancies are induced in CeO_(2) by a general doping concept that enables fast ionic conduction at low-temperature ranges(300-500℃)for PCFCs.Rietveld refinement of the X-ray diffraction(XRD)patterns established the pure cubic fluorite structure of Al-doped CeO_(2)(ADC)samples and confirmed Al ions’fruitful integration in the CeO_(2) lattice.The electronic structure of the alumina-doped ceria of the materials(10ADC,20ADC,and 30ADC)has been investigated.As a result,it was found that the best composition of 30ADC-based electrolytes induced maximum lattice oxygen vacancies.The corresponding PCFC exhibited a maximum power output of 923 mW/cm^(2)at 500℃.Moreover,the investigation proves the proton-conducting ability of alumina-doped ceria-based fuel cells by using an oxide ion-blocking layer. 展开更多
关键词 proton ceramic fuel cells oxygen vacancies higher fuel cell performance DOPING fast ions transportation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部