期刊文献+
共找到9,012篇文章
< 1 2 250 >
每页显示 20 50 100
“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效观察及EEG脑电机制研究
1
作者 霍岩 陈泽勋 +5 位作者 刘广宇 郑伟 陈斯 纪万里 李明 张剑宁 《中国中西医结合耳鼻咽喉科杂志》 2025年第1期11-17,5,共8页
目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特... 目的 观察“鸣安方”治疗心脾两虚型特发性耳鸣的短期疗效,运用生物反馈仪采集分析患者EEG,探讨其脑电中枢机制。方法 选取于上海中医药大学附属岳阳中西医结合医院耳鼻咽喉科耳鸣专病门诊2022年7月~2023年10月期间就诊的心脾两虚型特发性耳鸣患者304例,随机分为基础治疗组(耳鸣交流解惑+声治疗,例=152)和“鸣安方”组(基础治疗+鸣安方治疗,例=152)。治疗2周后对两组患者治疗前后进行耳鸣残疾量表(THI)、阿森斯失眠量表(AIS)、视觉模拟评分(VAS)、焦虑自评量表(SAS)、抑郁自评量表(SDS)及纯音听阈(PTA)评估,比较两组的临床疗效。同时运用生物反馈仪采集分析鸣安方组患者治疗前后EEG,分析治疗前后δ波、θ波、α波、β波能量值及SMR节律变化,比较心脾两虚型主观特发性耳鸣患者在“鸣安方”治疗前后的脑电波变化趋势。结果 (1)两组治疗后THI评分较治疗前均明显降低(P<0.001),鸣安方组THI评分较基础治疗组低(P<0.05);(2)两组治疗后VAS评分较治疗前均明显降低(P<0.05),治疗结束后,鸣安方组VAS评分较基础治疗组明显降低(P<0.05);(3)鸣安方组治疗后AIS、SDS评分较治疗前均明显降低(P<0.001),治疗后鸣安方组AIS、SDS评分较基础治疗组明显降低(P<0.001,P<0.05);(4)鸣安方组治疗后SAS评分较治疗前降低(P<0.05),治疗结束后两组SAS评分无差异(P>0.05);(5)鸣安方组患者δ波、β波能量值较治疗前明显降低(P<0.01,P<0.001),α波能量值显著升高(P<0.05),基础治疗组δ波、β波能量值较治疗前明显降低(P<0.001,P<0.01)。治疗后两组间比较,鸣安方组α波能量值高于基础治疗组(P<0.05),β波能量值显著低于基础治疗组(P<0.05)。结论 鸣安方可改善心脾两虚型耳鸣患者主观感受,尤其对缓解焦虑、抑郁及睡眠障碍等不良伴随症状疗效显著,可能与提高患者α波、降低β波能量值有关。 展开更多
关键词 鸣安方 特发性耳鸣 心脾两虚 eeg
在线阅读 下载PDF
基于EEG-TCNet的运动想象脑电识别方法
2
作者 李卫校 凌六一 《重庆工商大学学报(自然科学版)》 2025年第1期123-128,共6页
目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流E... 目的针对以深度学习为解码的方法在运动想象脑电信号识别过程中仅对原始的运动想象脑电信号进行特征提取而不进行样本扩充和往往采用单一尺度的卷积对多频段的运动想象脑电信号进行特征提取,无法充分发掘各频段之间相关性的问题,在主流EEG-TCNet解码方法的基础上提出了一种样本扩充和多尺度的解码方法。方法首先,对运动想象脑电信号进行分割,以增加数据集样本数,将运动想象脑电信号等间隔下采样成3个不同的子序列,每个子序列都含有与原始运动想象脑电信号相同的数据特征;其次,使用EEGNet对每个子序列进行特征提取,对不同的子序列使用不同尺度的EEGNet以便提取不同频段的特征;之后,对每个经过EEGNet提取后的子序列采用一种基于卷积滑动的方法再进分割,充分挖掘每个子序列潜在的信息;再次,将每个处理后的子序列传入到时间卷积网络进行特征提取和降维;最后,对所有处理后的子序列进行拼接、平均操作,并传入到全连接层进行识别。结果在公开的BCI竞赛数据集Ⅳ-2a上进行验证,所做出改进的网络相对于EEG-TCNet、EEGNet的解码准确度分别有5.19%和7.7%的提升。结论证明所做出改进的网络在运动想象脑电信号识别任务中具有更理想的解码性能。 展开更多
关键词 eeg-TCNet 运动想象脑电信号 卷积神经网络 时间卷积网络
在线阅读 下载PDF
教育智能体如何提供更有效的支持?——基于EEG信号的脑机制与优化策略探究
3
作者 王雪 孙明琳 +1 位作者 杨洁 邓丽 《电化教育研究》 北大核心 2025年第2期49-56,共8页
教育智能体在数智空间中可扮演虚拟教师等角色并提供各类育人功能,对学习者的认知和情感发展有着重要影响。研究基于多媒体学习认知情感理论,利用教育智能体为学习者提供不同类型的认知支持与情感支持,并借助EEG信号探究不同类型的支持... 教育智能体在数智空间中可扮演虚拟教师等角色并提供各类育人功能,对学习者的认知和情感发展有着重要影响。研究基于多媒体学习认知情感理论,利用教育智能体为学习者提供不同类型的认知支持与情感支持,并借助EEG信号探究不同类型的支持对学习的影响及其脑机制问题,为教育智能体的优化设计提供科学依据。研究发现:教育智能体的问题化元认知提示和积极情绪设计的组合是最有效的支持方式,可全方位改善学习者的元认知水平、情绪状态、学习效果和大脑认知过程;大脑额叶区的Alpha、Beta、Gamma波越活跃,学习者的元认知水平越高,但也造成了更多的认知负担,导致学习效果不佳。最后,研究提出三条教育智能体设计和开展相关研究的建议:合理设置问题化元认知提示,引领学习者高阶思维能力的发展;融合问题化元认知提示与积极情绪设计,促进学习者认知和情感的全面发展;借助EEG技术揭示脑机制,提供教育智能体优化的底层逻辑。 展开更多
关键词 教育智能体 脑电图信号 脑机制 元认知提示 情绪设计
在线阅读 下载PDF
Utilizing Machine Learning Techniques to Enhance Attention-Deficit Hyperactivity Disorder Diagnosis Using Resting-State EEG Data
4
作者 Lina Han Liyan Li +6 位作者 Yanyan Chen Xiaohan Wu Yang Yu Xu Liu Zihan Yang Ling Li Xinxian Peng 《Journal of Clinical and Nursing Research》 2025年第1期209-217,共9页
Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Metho... Objective: This study investigates the auxiliary role of resting-state electroencephalography (EEG) in the clinical diagnosis of attention-deficit hyperactivity disorder (ADHD) using machine learning techniques. Methods: Resting-state EEG recordings were obtained from 57 children, comprising 28 typically developing children and 29 children diagnosed with ADHD. The EEG signal data from both groups were analyzed. To ensure analytical accuracy, artifacts and noise in the EEG signals were removed using the EEGLAB toolbox within the MATLAB environment. Following preprocessing, a comparative analysis was conducted using various ensemble learning algorithms, including AdaBoost, GBM, LightGBM, RF, XGB, and CatBoost. Model performance was systematically evaluated and optimized, validating the superior efficacy of ensemble learning approaches in identifying ADHD. Conclusion: Applying machine learning techniques to extract features from resting-state EEG signals enabled the development of effective ensemble learning models. Differential entropy and energy features across multiple frequency bands proved particularly valuable for these models. This approach significantly enhances the detection rate of ADHD in children, demonstrating high diagnostic efficacy and sensitivity, and providing a promising tool for clinical application. 展开更多
关键词 Attention-deficit hyperactivity disorder Machine learning eeg signals Feature extraction Ensemble learning models DIAGNOSIS
在线阅读 下载PDF
耐药型癫痫患者EEG功率谱变化与认知损伤分级的相关性
5
作者 陈悦 王轶男 +2 位作者 吴阳 王恒 樊红彬 《脑与神经疾病杂志》 2025年第1期7-14,共8页
目的探究耐药性癫痫(DRE)患者脑电图(EEG)功率谱变化与认知损伤分级的相关性。方法选择2021年1月-2024年1月于徐州医科大学附属医院神经内科就诊的DRE患者79例(DRE组,n=79)和同时期体检的健康人群82例(健康组,n=82)为研究对象,比较两组... 目的探究耐药性癫痫(DRE)患者脑电图(EEG)功率谱变化与认知损伤分级的相关性。方法选择2021年1月-2024年1月于徐州医科大学附属医院神经内科就诊的DRE患者79例(DRE组,n=79)和同时期体检的健康人群82例(健康组,n=82)为研究对象,比较两组临床资料和EEG功率谱的差异进行认知测试。根据认知损伤程度将DRE患者分为轻度认知损伤组(n=21)、中度认知损伤组(n=27)、重度认知损伤组(n=34)。采用相关性分析对EEG指标与患者认知水平的相关性进行分析;采用有序Logistic回归分析EEG功率谱对认知损害程度的影响。结果DRE组患者前额区(θ)、前额区(β2)、额区(α1)、颞区(δ)、枕区(β2)及枕区(δ)均显著高于健康组(^(均)P<0.05),中央-顶区(α2)和颞区(β1)显著低于健康组(^(均)P<0.05),记忆商、图像自由回忆、无意义图像再认、言语流畅性测试、顺背及倒背均低于健康组(^(均)P<0.05),重度认知损伤组患者前额区RP(β2)、中央-顶区AP(α2)及枕区RP(δ)显著低于轻度认知损伤组和中度认知损伤组(^(均)P<0.05)。相关性分析显示,MoCA与额区AP(α1)和枕区RP(δ)呈正相关,记忆商与颞区AP(δ)呈正相关,图像自由回忆与额区AP(α1)、颞区RP(β1)及枕区RP(δ)呈负相关,无意义图像再认与前额区RP(β2)、枕区AP(β2)呈正相关,言语流畅性测试与颞区AP(δ)和颞区AP(δ)呈负相关。有序Logistic回归分析显示,前额区RP(β2)、中央-顶区AP(α2)、枕区RP(δ)是认知损害程度的保护因素。结论DRE患者EEG功率谱变化与认知损伤分级之间存在显著的相关性,随着认知损伤程度的加重,EEG的异常程度也会增加。 展开更多
关键词 耐药性癫痫 脑电图变化 认知损伤分级 相关性
在线阅读 下载PDF
基于平均能量差的运动想象EEG通道选择和特征提取
6
作者 孟明 陈思齐 +1 位作者 高云园 佘青山 《传感技术学报》 CAS CSCD 北大核心 2024年第9期1555-1562,共8页
共空间模式(CSP)广泛应用于脑电信号(EEG)的特征提取,合适的通道选择可以有效地提高CSP的分类性能,增加信噪比。根据运动想象信号的平均能量差来进行通道选择和特征提取。首先取两类运动想象信号的通道均值能量作为投票的阈值,根据投票... 共空间模式(CSP)广泛应用于脑电信号(EEG)的特征提取,合适的通道选择可以有效地提高CSP的分类性能,增加信噪比。根据运动想象信号的平均能量差来进行通道选择和特征提取。首先取两类运动想象信号的通道均值能量作为投票的阈值,根据投票差值统计各通道上有明显能量差值试次的数量,基于此来选择出合适的通道,然后对这些通道取能量特征进行归一化,再结合CSP空域特征利用SVM进行分类。在BCI CompetitionⅢData SetsⅣa和BCI Competition IV Dataset SetsⅠ两个数据集上进行的分类实验中,所提出的方法相比于全通道CSP,平均精度分别提高了5.7%和10.9%,通道数分别减少了74.3%和51.7%,验证了所提出的通道选择和特征提取方法的有效性。 展开更多
关键词 eeg 运动想象 CSP SVM 通道选择 能量特征
在线阅读 下载PDF
注意力残差网络结合LSTM的EEG情绪识别研究 被引量:1
7
作者 张琪 熊馨 +2 位作者 周建华 宗静 周雕 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期570-579,共10页
基于脑电信号的情感识别已成为情感计算和人机交互领域的一个重要挑战。由于脑电信号中具有时间、空间、频率维度信息,采用结合注意力残差网络与长短时记忆网络的混合网络模型(ECA-ResNet-LSTM)对脑电信号进行特征提取与识别。首先,提... 基于脑电信号的情感识别已成为情感计算和人机交互领域的一个重要挑战。由于脑电信号中具有时间、空间、频率维度信息,采用结合注意力残差网络与长短时记忆网络的混合网络模型(ECA-ResNet-LSTM)对脑电信号进行特征提取与识别。首先,提取时域分段后脑电信号不同频带微分熵特征,将从不同通道中提取出的微分熵特征转化为四维特征矩阵;然后通过注意力残差网络(ECA-ResNet)提取脑电信号中空间与频率信息,并引入注意力机制重新分配更相关频带信息的权重,长短时记忆网络(LSTM)从ECA-ResNet的输出中提取时间相关信息。实验结果表明:在DEAP数据集唤醒维和效价维二分类准确率分别达到了97.15%和96.13%,唤醒-效价维四分类准确率达到了95.96%,SEED数据集积极-中性-消极三分类准确率达到96.64%,相比现有主流情感识别模型取得了显著提升。 展开更多
关键词 脑电信号 情感识别 微分熵 注意力机制 残差网络
在线阅读 下载PDF
基于深层图卷积的EEG情绪识别方法研究 被引量:2
8
作者 李奇 常立娜 +1 位作者 武岩 闫旭荣 《电子测量技术》 北大核心 2024年第4期18-22,共5页
针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的... 针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的节点特征收敛到固定空间无法学习到有效特征的问题,并在卷积层后加入PN正则化扩大不同情绪特征间的距离,提高情绪识别的性能。在SEED数据集上进行实验,与浅层图卷积网络相比准确率提高了0.7%,标准差下降了3.15。结果表明该模型提取的全局脑区空间关联信息对情绪识别的有效性。 展开更多
关键词 脑电信号 情绪识别 深度图卷积神经网络 全局脑区
在线阅读 下载PDF
EEG信号结合特征融合技术诊断精神分裂症和抑郁症
9
作者 吴恒 刘浩 +1 位作者 肖萌 肖开提·苏理旦 《精神医学杂志》 2024年第2期176-180,共5页
目的探索通过机器学习算法结合脑电信号实现对精神分裂症和抑郁症的诊断。方法分别采集33例精神分裂症患者和28例抑郁症患者的脑电信号,并将采集到的脑电图信号格式由EDF格式转化为ASCII格式,提取脑电信号的Lempel-Ziv复杂度、最大李雅... 目的探索通过机器学习算法结合脑电信号实现对精神分裂症和抑郁症的诊断。方法分别采集33例精神分裂症患者和28例抑郁症患者的脑电信号,并将采集到的脑电图信号格式由EDF格式转化为ASCII格式,提取脑电信号的Lempel-Ziv复杂度、最大李雅普诺夫指数、Higuchi分形维数等特征。应用特征融合策略对特征进行融合,形成新的特征向量,然后利用机器学习分类算法进行分类研究。结果最终基于高斯核函数的支持向量机(SVM)的分类准确率为84.85%,其中灵敏度为89.47%,特异性为78.57%。结论通过提取EEG脑电信号特征结合机器学习算法对精神分裂症和抑郁症进行识别,对开发新型的精神分裂症和抑郁症的诊断技术具有一定的研究意义。 展开更多
关键词 精神分裂症 抑郁症 脑电信号 机器学习 特征融合
在线阅读 下载PDF
基于有效注意力和GAN结合的脑卒中EEG增强算法 被引量:1
10
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
在线阅读 下载PDF
强化学习融合群智能算法的癫痫EEG不平衡分类方法
11
作者 李奇 李鹏飞 +2 位作者 赵迪 刘嘉威 杨菁菁 《重庆理工大学学报(自然科学)》 北大核心 2024年第12期110-123,共14页
癫痫智能检测的脑电数据具有不平衡性。考虑到单一的群智能算法在改善数据不平衡方面的不足,提出了一种基于强化学习的自适应融合群智能算法。使用强化学习在种群进化的不同阶段自适应地选择并融合多种群智能算法;通过双种群协同进化策... 癫痫智能检测的脑电数据具有不平衡性。考虑到单一的群智能算法在改善数据不平衡方面的不足,提出了一种基于强化学习的自适应融合群智能算法。使用强化学习在种群进化的不同阶段自适应地选择并融合多种群智能算法;通过双种群协同进化策略,更高效地获得全局最优解;使用由全局最优解所表示的样本构建平衡数据集并训练分类器。在2个公共癫痫脑电数据集上的实验表明,该方法优于单一的群智能算法,能够有效提高分类器对少数类样本和整体数据集的分类性能。 展开更多
关键词 癫痫发作检测 脑电信号 不平衡数据集 强化学习 群智能算法
在线阅读 下载PDF
基于EEG和面部视频的多模态连续情感识别 被引量:1
12
作者 雪雯 陈景霞 +1 位作者 胡凯蕾 刘洋 《陕西科技大学学报》 北大核心 2024年第1期169-176,共8页
针对脑电(Electroencephalogram, EEG)通道间和时间上情绪强度的改变很难被捕捉,以及不同被试的面部特征情绪上的相似性难以挖掘的问题,文章提出了一种基于EEG和面部视频的多模态连续情感识别模型.采用基于时空注意力机制(Spatial-Tempo... 针对脑电(Electroencephalogram, EEG)通道间和时间上情绪强度的改变很难被捕捉,以及不同被试的面部特征情绪上的相似性难以挖掘的问题,文章提出了一种基于EEG和面部视频的多模态连续情感识别模型.采用基于时空注意力机制(Spatial-Temporal Attention)的卷积和双向长短期记忆神经网络的组合模型(STA-CNNBiLSTM)对EEG中提取的功率谱密度(Power Spectral Density, PSD)特征进行深层特征学习与情感分类;采用引入自注意力机制的预训练卷积神经网络(SA-CNN)对人脸面部几何特征进行学习与情感分类.采用决策级融合算法,对两个模态的分类结果进行迭代学习与融合,得到最终多模态情感分类结果.在公开数据集MAHNOB-HCI进行了大量对比验证实验,在FER2013数据集的面部几何特征上对SA-CNN模型进行了预训练.在独立被试的实验中,所提模型在效价维度二分类的平均准确率为75.50%,在唤醒维度二分类的平均准确率为79.00%,均优于单模态上的最高平均准确率.和目前流行的模型LSSVM、SE-CNN和AM-LSTM相比较,所提模型的分类效果更优,验证了所提时空注意力机制能够捕捉更多的EEG时空特征,自注意力机制能够关注到不同被试面部特征的相似性,进而提高了多模态情感识别的性能. 展开更多
关键词 eeg 多模态情感识别 卷积双向长短期记忆组合模型 时空注意力机制 自注意力机制
在线阅读 下载PDF
Investigating the influence of monosodium L-glutamate on brain responses via scalp-electroencephalogram(scalp-EEG) 被引量:1
13
作者 Ben Wu Xirui Zhou +1 位作者 Imre Blank Yuan Liu 《Food Science and Human Wellness》 SCIE 2022年第5期1233-1239,共7页
As the relevance between left and right brain neurons when transmitting electrical signals of umami taste is unknown,the aim of this work was to investigate responsive regions of the brain to the umami tastant monosod... As the relevance between left and right brain neurons when transmitting electrical signals of umami taste is unknown,the aim of this work was to investigate responsive regions of the brain to the umami tastant monosodium glutamate(MSG)by using scalp-electroencephalogram(EEG)to identify the most responsive brain regions to MSG.Three concentrations of MSG(0.05,0.12,0.26 g/100 mL)were provided to participants for tasting while recoding their responsive reaction times and brain activities.The results indicated that the most responsive frequency to MSG was at 2 Hz,while the most responsive brain regions were T4 CzA2,F8 CzA2,and Fp2 CzA2.Moreover,the sensitivity of the brain to MSG was significantly higher in the right brain region.This study shows the potential of using EEG to investigate the relevance between different brains response to umami taste,which contributes to better understanding the mechanism of umami perception. 展开更多
关键词 UMAMI TASTE Monosodium glutamate electroencephalogram BRAIN
在线阅读 下载PDF
基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别
14
作者 刘悦 张雪英 +2 位作者 陈桂军 黄丽霞 孙颖 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2247-2257,共11页
为了提高情感识别的准确率,提出多脑区注意力机制和胶囊融合模块的胶囊网络模型(MBA-CFc CapsNet).通过情感视频片段诱发采集EEG-fNIRS信号,构建TYUT3.0数据集.提取EEG和f NIRS的特征,将其映射到矩阵,通过多脑区注意力机制融合EEG和fNIR... 为了提高情感识别的准确率,提出多脑区注意力机制和胶囊融合模块的胶囊网络模型(MBA-CFc CapsNet).通过情感视频片段诱发采集EEG-fNIRS信号,构建TYUT3.0数据集.提取EEG和f NIRS的特征,将其映射到矩阵,通过多脑区注意力机制融合EEG和fNIRS的特征,给予不同脑区特征不同的权重,以提取质量更高的初级胶囊.使用胶囊融合模块,减少进入动态路由机制的胶囊数量,减少模型运行的时间.利用MBA-CFc CapsNet模型在TYUT3.0情感数据集上进行实验,与单模态EEG和f NIRS识别结果相比,2种信号结合情感识别的准确率提高了1.53%和14.35%.MBA-CF-cCapsNet模型与原始CapsNet模型相比,平均识别率提高了4.98%,与当前常用的CapsNet情感识别模型相比提高了1%~5%. 展开更多
关键词 胶囊网络 eeg FNIRS 多脑区注意力机制 胶囊融合 情感识别
在线阅读 下载PDF
THE EFFECT OF ACUPUNCTURING ACUPOINTS ON THE CHANGE OF ELECTROENCEPHALOGRAM (EEG) IN ENDOTOXIC SHOCKED RATS
15
作者 Huang Kunhou Rong Peijing +1 位作者 Zhang Xinyu Cai Hong, Institute of Acupuncture & Moxibustion, China Academy of Traditional Chinese Medicine, Beijing 100700, China 《World Journal of Acupuncture-Moxibustion》 1993年第3期42-47,共6页
In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/4... In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP. 展开更多
关键词 ENDOTOXIC shock electroencephalogram (eeg) DYSRHYTHMIA BLOOD pressure (BP)
在线阅读 下载PDF
抑郁症EEG诊断的类脑学习模型
16
作者 曾昊辰 胡滨 关治洪 《计算机工程与应用》 CSCD 北大核心 2024年第3期157-164,共8页
抑郁症是一种全球性精神疾病,传统诊断方法主要依靠量表与医生的主观评估,无法有效识别症状,甚至存在误诊的风险。基于生理信号的深度学习辅助诊断有望改善传统缺乏生理学依据的方法。然而,传统深度学习方法依赖巨大算力,且大多是端到... 抑郁症是一种全球性精神疾病,传统诊断方法主要依靠量表与医生的主观评估,无法有效识别症状,甚至存在误诊的风险。基于生理信号的深度学习辅助诊断有望改善传统缺乏生理学依据的方法。然而,传统深度学习方法依赖巨大算力,且大多是端到端的网络学习。这些学习方法也缺乏生理可解释性,限制了辅助诊断临床应用。提出一种用于抑郁症脑电图(electroencephalogram,EEG)诊断的类脑学习模型,在功能层面,构建脉冲神经网络对抑郁症与健康个体进行分类,精度超过97.5%,相比深度卷积方法,脉冲方法降低了能耗;在结构层面,利用复杂网络建立脑连接的空间拓扑并分析其图特征,找出了抑郁症个体潜在的脑功能连接异常机制。 展开更多
关键词 类脑学习 脉冲神经网络 复杂网络特征 抑郁症 脑电图
在线阅读 下载PDF
基于深度学习的EEG数据分析技术综述
17
作者 钟博 王鹏飞 +1 位作者 王乙乔 王晓玲 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期879-890,共12页
对近年来的相关工作进行全面分析、横向比较,梳理出基于深度学习的EEG数据分析闭环流程.对EEG数据进行介绍,从深度学习在EEG数据预处理、特征提取以及模型泛化3个关键阶段的应用进行展开,梳理深度学习算法在相应阶段提供的研究思路和解... 对近年来的相关工作进行全面分析、横向比较,梳理出基于深度学习的EEG数据分析闭环流程.对EEG数据进行介绍,从深度学习在EEG数据预处理、特征提取以及模型泛化3个关键阶段的应用进行展开,梳理深度学习算法在相应阶段提供的研究思路和解决方案,包括各阶段所存在的难点与问题.全方位总结出不同算法的主要贡献和局限性,讨论深度学习技术在各个阶段处理EEG数据时所面临的挑战及未来的发展方向. 展开更多
关键词 头皮脑电(eeg) 闭环流程 深度学习 预处理 特征提取 模型泛化
在线阅读 下载PDF
EEG-fNIRS技术在神经精神疾病研究中的应用进展 被引量:1
18
作者 高晨洋 吴凯 +5 位作者 李文豪 李懿 蒋知乐 汪煜新 陈文睿 周静 《中国医学物理学杂志》 CSCD 2024年第3期348-355,共8页
通过脑电图(EEG)、功能近红外光谱成像(fNIRS)、功能磁共振成像对神经精神疾病已经开展广泛的研究与应用。近年来随着技术的不断发展,EEG与fNIRS的同步采集设备被开发且逐步应用于神经精神疾病的研究中。本文首先对EEG-fNIRS设备的同步... 通过脑电图(EEG)、功能近红外光谱成像(fNIRS)、功能磁共振成像对神经精神疾病已经开展广泛的研究与应用。近年来随着技术的不断发展,EEG与fNIRS的同步采集设备被开发且逐步应用于神经精神疾病的研究中。本文首先对EEG-fNIRS设备的同步检测与数据分析技术进行简要概述,总结脑卒中、癫痫以及其他神经精神疾病研究中EEG-fNIRS的分析方法与最新发现,并探讨研究的发展方向。 展开更多
关键词 脑卒中 癫痫 神经精神疾病 脑电图 功能近红外光谱成像 综述
在线阅读 下载PDF
乒乓球运动员的视觉运动整合优势——基于功能偏侧化理论的EEG证据
19
作者 漆昌柱 宋一锐 王淙一 《上海体育大学学报》 CSSCI 北大核心 2024年第11期69-81,104,共14页
目的探究乒乓球运动员视觉运动整合的优势特征,并基于功能偏侧化理论分析其神经机制。方法选取22名乒乓球运动员作为专家组,21名普通大学生作为新手组。采用半视野速示技术,设置视觉运动整合任务,测试并比较乒乓球运动员与新手视觉运动... 目的探究乒乓球运动员视觉运动整合的优势特征,并基于功能偏侧化理论分析其神经机制。方法选取22名乒乓球运动员作为专家组,21名普通大学生作为新手组。采用半视野速示技术,设置视觉运动整合任务,测试并比较乒乓球运动员与新手视觉运动整合的行为差异及脑电特征。结果(1)乒乓球专家组的右手反应时显著短于新手组(P<0.05);(2)在视觉加工阶段,乒乓球专家组的P1成分潜伏期显著长于新手组,且专家组左半球N2潜伏期显著高于右半球(P<0.05);(3)在视觉运动转换和运动执行阶段,乒乓球专家组诱发了更大的BA6区的negativity波幅和BA4区的N2波幅(P<0.05);(4)在顶-枕区域,乒乓球专家组的高频alpha节律神经振荡水平低于新手组,具体表现为在左视野右手反应模式下高频alpha节律振荡水平较低(P<0.05)。结论(1)乒乓球运动员右手(优势手)的视觉运动反应时更短;(2)乒乓球运动员大脑右半球在早期视觉加工阶段对刺激识别更迅速,在视觉运动转换阶段更直接有效;(3)乒乓球运动员在视觉运动整合过程中表现出更少的注意资源消耗,主要体现在右半球的视觉加工和左半球的动作反应优势上。 展开更多
关键词 乒乓球运动员 视觉运动整合 功能偏侧化 神经振荡 事件相关电位 eeg
在线阅读 下载PDF
The relationship between the electroencephalogram(EEG),head computerized tomography and the prognosis of spasm in infants
20
作者 李正秀 俞曙星 董鸿雁 《中国临床康复》 CSCD 2002年第11期1703-1703,共1页
Objective To investigate relationship between prognosis of infant spasm and electroencephalogram(EEG) and head CT.Method 47 infants underwent EEG and head CT.Follow up was performed to compare the prognosis during dif... Objective To investigate relationship between prognosis of infant spasm and electroencephalogram(EEG) and head CT.Method 47 infants underwent EEG and head CT.Follow up was performed to compare the prognosis during different periods.Result Among 31 infants with abnormal head CT,2 infants were cured,17 were improved and effective rate was 61.3%. Among 16 patients with normal head CT,6 were cured,8 were improved,and effective rate was 87.5%. Among 34 infants with high rhythm disorder,8 were cured,21 were improved,effective rate was 85.29%. For 13 infants with abnormal EEG of other types,no infants were cured,4 were improved,and effective rate was 30.8%.Conclusion Changed head CT not various EEG has no significant effect on prognosis of infant spasm(P >0.05).Prognosis is favorable in infants with high rhythm disorder(P<0.01). 展开更多
关键词 婴儿 痉挛 预后 CT诊断 eeg诊断
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部