We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe ...We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.展开更多
TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors.In fact,it has been widely used for a long time as white pigment and sunscreen because of its whiteness,high refractive index,and ex...TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors.In fact,it has been widely used for a long time as white pigment and sunscreen because of its whiteness,high refractive index,and excellent optical properties.However,its electronic structures and the related properties have not been satisfactorily understood.Here,we use Tran and Blaha's modified Becke-Johnson(TB-mBJ) exchange potential(plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2.Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation(LDA) and generalized gradient approximation(GGA),in contrast with substantially overestimated values from many-body perturbation(GW) calculations.As for optical dielectric functions(both real and imaginary parts),refractive index,and extinction coefficients as functions of photon energy,our mBJ calculated results are in excellent agreement with the experimental curves.Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states.These results should be helpful to understand the high temperature ferromagnetism in doped TiO2.This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.展开更多
We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the el...We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the electronic structure and optical properties of MgxZnl_xS bulk crystal are sensitive to the Mg impurity composition. In particular, the MgxZnl-xS bulk crystal displays a direct band structure and the band gap increases from 2.05 eV to 2.91 eV with Mg dopant compo- sition value x increasing from 0 to 0.024. The S 3p electrons dominate the top of valence band, while the Zn 4s electrons and Zn 3p electrons occupy the bottom of conduction band in MgxZnl_xS bulk crystal. Moreover, the dielectric constant decreases and the optical absorption peak obviously has a blue shift. The calculated results provide important theoretical guidance for the applications of MgxZn1-xS bulk crystal in optical detectors.展开更多
The electronic structure and optical properties of CdGeAs2 were calculated by the first principle method using ultra-soft pseudo-potential approach of the plane wave based upon density functional theory (DFT). Mulli...The electronic structure and optical properties of CdGeAs2 were calculated by the first principle method using ultra-soft pseudo-potential approach of the plane wave based upon density functional theory (DFT). Mulliken population analysis showed that atomic orbital hybridization occurs when forming chemical bonds. The relationship between inter-band transition and optical properties was analyzed to provide a theoretical basis for investigating or controlling CdGeAs2 crystal defects.展开更多
The electronic structures and optical properties of II-III2-VI4 (II = Zn, Cd; III = In; VI = Se, Te) compounds are studied by the density functional theory (DFT) using the Vienna ab initio simulation package (VAS...The electronic structures and optical properties of II-III2-VI4 (II = Zn, Cd; III = In; VI = Se, Te) compounds are studied by the density functional theory (DFT) using the Vienna ab initio simulation package (VASP). Geometrical optimization of the unit cell is in good agreement with the experimental data. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at G resulting in a direct energy gap. The optical properties are analyzed, and the independent second harmonic generation (SHG) coefficients are determined. By an analysis of the band structure, we can get that SHG response of the system can be attributed to the transitions from the bands near the top of valence band that are derived from the Se/Te p states to the unoccupied bands contributed by the p states of In atoms.展开更多
The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calcul...The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.展开更多
The electronic structures and optical properties of rocksalt indium nitride (INN) under pressure were studied using the first-principles calculation by considering the exchange and correlation potentials with the ge...The electronic structures and optical properties of rocksalt indium nitride (INN) under pressure were studied using the first-principles calculation by considering the exchange and correlation potentials with the generalized gradient approximation. The calculated lattice constant shows good agreement with the experimental value. It is interestingly found that the band gap energy Eg at the F or X point remarkably increases with increasing pressure, but Eg at the L point does not increase obviously. The pressure coefficient of Eg is calculated to be 44 meV/GPa at the F point. Moreover, the optical properties of rocksalt InN were calculated and discussed based on the calculated band structures and electronic density of states.展开更多
The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. ...The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1-xGe, NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1-x Gex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1-xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes.展开更多
The phase diagram of HfO_2–TiO_2 system shows that when Ti content is less than 33.0 mol%, HfO_2–TiO_2 system is monoclinic; when Ti content increases from 33.0 mol% to 52.0 mol%, it is orthorhombic; when Ti content...The phase diagram of HfO_2–TiO_2 system shows that when Ti content is less than 33.0 mol%, HfO_2–TiO_2 system is monoclinic; when Ti content increases from 33.0 mol% to 52.0 mol%, it is orthorhombic; when Ti content reaches more than 52.0 mol%, it presents rutile phase. So, we choose the three phases of HfO_2–TiO_2 alloys with different Ti content values. The electronic structures and optical properties of monoclinic, orthorhombic and rutile phases of HfO_2–TiO_2 alloys are obtained by the first-principles generalized gradient approximation(GGA) +U approach, and the effects of Ti content and crystal structure on the electronic structures and optical properties of HfO_2–TiO_2 alloys are investigated. By introducing the Coulomb interactions of 5 d orbitals on Hf atom(U_1~d), those of 3 d orbitals on Ti atom(U_2~d), and those of 2 p orbitals on O atom(Up) simultaneously, we can improve the calculation values of the band gaps, where U_1~d, U_2~d, and Up values are 8.0 eV, 7.0 eV, and 6.0 eV for both the monoclinic phase and orthorhombic phase, and 8.0 eV, 7.0 eV, and 3.5 eV for the rutile phase. The electronic structures and optical properties of the HfO_2–TiO_2 alloys calculated by GGA +U_1~d(U_1~d= 8.0 eV) +U_2~d(U_2~d= 7.0 eV) +U^p(U^p= 6.0 eV or 3.5 eV) are compared with available experimental results.展开更多
The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional the...The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional theory. The band gaps narrowing of AI1-x Cox N are found with the increase of Co concentrations. The analyses of the band structures and density of states show that AI1-xCoxN alloys exhibit a halfometallie character. Moreover, we have succeeded in demonstrating that Co doped AIN system in x = 0.125 is always antiferromagnetie, which is in good agreement with the experimental results. Besides, it is shown that the insertion of Co atom leads to redshift of the optical absorption edge. Finally, the optical constants of pure A1N and AI1-xCoxN alloy, such as loss function, refractive index and reflectivity, are discussed.展开更多
A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Bu...A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.展开更多
The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that ...The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that the optimal form of p-type GaN is obtained with an appropriate AI:Mg co-doping ratio rather than with only Mg doping. A1 doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of A1-Mg co-doped GaN photoelectric materials.展开更多
The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).Th...The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS) were presented.The calculated energy band structures show that both YZnAsO and LaZnAsO are indirect gap semiconductors with band gap of 1.173 1 eV and 1.166 5 eV,respectively.The DOS and PDOS show the hybridization of Y-O/La-O atom orbits and Zn-As atom orbits.The dielectric function,reflectivity,absorption coefficient,refractive index,electron energy-loss function and optical conductivity were presented in an energy range from 0 to 25 eV for discussing the optical properties of YZnAsO and LaZnAsO.展开更多
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most sta...The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.展开更多
The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient a...The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.展开更多
The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electr...The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.展开更多
With the help of ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculating the electronic structure and linear optical properties is carried out for XCd2(SO4)3 (X =Tl, Rb). The result...With the help of ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculating the electronic structure and linear optical properties is carried out for XCd2(SO4)3 (X =Tl, Rb). The results show that Tl2Cd2(SO4)3 (TlCdS) has a larger band gap than Rb2Cd2(SO4)3 (RbCdS) and the energy bands for RbCdS are more dispersive than those of TlCdS. From their partial densities of states (PDOS), we have observed that the hybridization between S ionic 2p and O atomic 2p orbitals forms SO4 ionic groups. The remarkable difference between RbCdS and TlCdS is, however, the degree of hybridization between cation (Tl and Rb) and its surrounding oxygen atoms. In the view of quantum chemistry, the strong p-d hybridization indicates the existence of their cation ionic bonds (Cd-O, Rb-O, and Tl-O). The calculations of TlCdS and RbCdS show their optical properties to be less anisotropic. Their anisotropies in the optical properties mainly occur in a low photon energy region of 5-16 eV.展开更多
The equilibrium lattice constant, the cohesive energy and the electronic properties of light metal hydrides LiXH3 and XLiH3 (X = Be, B or C) with perovskite lattice structures have been investigated by using the pse...The equilibrium lattice constant, the cohesive energy and the electronic properties of light metal hydrides LiXH3 and XLiH3 (X = Be, B or C) with perovskite lattice structures have been investigated by using the pseudopotential plane-wave method. Large energy gap of LiBeH3 indicates that it is insulating, but other investigated hydrides are metallic. The pressure-induced metallization of LiBeH3 is found at about 120 GPa, which is attributed to the increase of Be-p electrons with pressure. The electronegativity of the p electrons of X atom is responsible for the metallicity of the investigated LiXH3 hydrides, but the electronegativity of the s electrons of X atom plays an important role in the metallicity of the investigated XLiH3 hydrides. In order to deeply understand the investigated hydrides, their optical properties have also been investigated. The optical absorption of either LiBeH3 or BeLiH3 has a strong peak at about 5 eV, showing that their optical responses are qualitatively similar. It is also found that the optical responses of other investigated hydrides are stronger than those of LiBeH3 and BeLiH3 in lower energy ranges, especially in the case of CLiH3.展开更多
The systematic trends of electrionic structure and optical properties of rutile (P42/mnm) RuO2 have been cal- culated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method ...The systematic trends of electrionic structure and optical properties of rutile (P42/mnm) RuO2 have been cal- culated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method within the generalised gradient approximation (GGA) for the exchange-correlation potential. The obtained equilibrium structure parameters are in excellent agreement with the experimental data. The calculated bulk modulus and elastic constants are also in good agreement with the experimental data and available theoretical calculations. Analysis based on elec- tronic structure and pseudogap reveals that the bonding nature in RuO2 is a combination of covalent, ionic and metallic bonds. Based on a Kramers Kronig analysis of the reflectivity, we have obtained the spectral dependence of the real and imaginary parts of the complex dielectric constant (~1 and z2, respectively) and the refractive index (n); and comparisons have shown that the theoretical results agree well with the experimental data as well. Meanwhile, we have also calculated the absorption coefficient, reflectivity index, electron energy loss function of RuO2 for radiation up to 30 eV. As a result, the predicted reflectivity index is in good agreement with the experimental data at low energies.展开更多
Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation i...Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.展开更多
基金Supported by the New Century Excellent Talents in University in Ministry of Education of China under Grant No NCET-09-0867
文摘We report a study of the electronic structure and optical properties of uranium dioxide (U02) based on the ab-initio density-functional theory and using the generalized gradient approximation. To correctly describe the strong correlation between 5 f electrons of a uranium atom, we employ the on-site Hubbard U correction term and optimize the correlation parameter of the bulk uranium dioxide. Then we give the structural and electronic properties of the ground state of uranium dioxide. Based on the accurate electronic structure, we calculate the complex dielectric function of UO2 and the related optieM properties, such as reflectivity, refractive index, extinction index, energy loss spectra, and absorption coefficient.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174359,10874232,and 10774180)the National Basic Research Program of China (Grant No. 2012CB932302)
文摘TiO2 has been recently used to realize high-temperature ferromagnetic semiconductors.In fact,it has been widely used for a long time as white pigment and sunscreen because of its whiteness,high refractive index,and excellent optical properties.However,its electronic structures and the related properties have not been satisfactorily understood.Here,we use Tran and Blaha's modified Becke-Johnson(TB-mBJ) exchange potential(plus a local density approximation correlation potential) within the density functional theory to investigate electronic structures and optical properties of rutile and anatase TiO2.Our comparative calculations show that the energy gaps obtained from mBJ method agree better with the experimental results than that obtained from local density approximation(LDA) and generalized gradient approximation(GGA),in contrast with substantially overestimated values from many-body perturbation(GW) calculations.As for optical dielectric functions(both real and imaginary parts),refractive index,and extinction coefficients as functions of photon energy,our mBJ calculated results are in excellent agreement with the experimental curves.Our further analysis reveals that these excellent improvements are achieved because mBJ potential describes accurately the energy levels of Ti 3d states.These results should be helpful to understand the high temperature ferromagnetism in doped TiO2.This approach can be used as a standard to understand electronic structures and the related properties of such materials as TiO2.
基金Projected supported by the National Natural Science Foundation of China(Grant Nos.61076042 and 61474048)
文摘We perform the first-principles calculations within the framework of density functional theory to determine the elec- tronic structure and optical properties of MgxZnl-xS bulk crystal. The results indicate that the electronic structure and optical properties of MgxZnl_xS bulk crystal are sensitive to the Mg impurity composition. In particular, the MgxZnl-xS bulk crystal displays a direct band structure and the band gap increases from 2.05 eV to 2.91 eV with Mg dopant compo- sition value x increasing from 0 to 0.024. The S 3p electrons dominate the top of valence band, while the Zn 4s electrons and Zn 3p electrons occupy the bottom of conduction band in MgxZnl_xS bulk crystal. Moreover, the dielectric constant decreases and the optical absorption peak obviously has a blue shift. The calculated results provide important theoretical guidance for the applications of MgxZn1-xS bulk crystal in optical detectors.
基金supported by the National Natural Science Foundation of China (E5057201)Heilongjiang Provincial Scientific and Technological Projects
文摘The electronic structure and optical properties of CdGeAs2 were calculated by the first principle method using ultra-soft pseudo-potential approach of the plane wave based upon density functional theory (DFT). Mulliken population analysis showed that atomic orbital hybridization occurs when forming chemical bonds. The relationship between inter-band transition and optical properties was analyzed to provide a theoretical basis for investigating or controlling CdGeAs2 crystal defects.
基金supported by the National Natural Science Foundation of China(21171039,21373048)the Open Foundation of Key Laboratory for High-energy Laser Science of China Academy of Engineering Physics(2012HCF05)
文摘The electronic structures and optical properties of II-III2-VI4 (II = Zn, Cd; III = In; VI = Se, Te) compounds are studied by the density functional theory (DFT) using the Vienna ab initio simulation package (VASP). Geometrical optimization of the unit cell is in good agreement with the experimental data. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at G resulting in a direct energy gap. The optical properties are analyzed, and the independent second harmonic generation (SHG) coefficients are determined. By an analysis of the band structure, we can get that SHG response of the system can be attributed to the transitions from the bands near the top of valence band that are derived from the Se/Te p states to the unoccupied bands contributed by the p states of In atoms.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of Computational and Stochastic Mathematics of Ministry of Education of ChinaProject(2013GK3130)supported by the Scientific and Technological Plan of Hunan Province,China
文摘The electronic structures,chemical bonding,elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory(DFT) within generalized gradient approximation(GGA).The calculated energy band structures show that the hP24 phase WB3 is metallic material.The density of state(DOS) and the partial density of state(PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states.Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics.Basic physical properties,such as lattice constant,bulk modulus,shear modulus and elastic constants Cij were calculated.The elastic modulus E and Poisson ratio υ were also predicted.The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner.Detailed analysis of all optical functions reveals that WB3 is a better dielectric material,and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5-11.4 eV and 14.5-15.5 eV.
文摘The electronic structures and optical properties of rocksalt indium nitride (INN) under pressure were studied using the first-principles calculation by considering the exchange and correlation potentials with the generalized gradient approximation. The calculated lattice constant shows good agreement with the experimental value. It is interestingly found that the band gap energy Eg at the F or X point remarkably increases with increasing pressure, but Eg at the L point does not increase obviously. The pressure coefficient of Eg is calculated to be 44 meV/GPa at the F point. Moreover, the optical properties of rocksalt InN were calculated and discussed based on the calculated band structures and electronic density of states.
基金Supported by the National Natural Science Foundation of China under Grant No 11004142the Program for New Century Excellent Talents in University under Grant No 11-035the Project Sponsored by the Scientific Research Foundation for ROCS of the Ministry of Education of China
文摘The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1-xGe, NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1-x Gex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1-xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11672087,11502058,and 11402252)
文摘The phase diagram of HfO_2–TiO_2 system shows that when Ti content is less than 33.0 mol%, HfO_2–TiO_2 system is monoclinic; when Ti content increases from 33.0 mol% to 52.0 mol%, it is orthorhombic; when Ti content reaches more than 52.0 mol%, it presents rutile phase. So, we choose the three phases of HfO_2–TiO_2 alloys with different Ti content values. The electronic structures and optical properties of monoclinic, orthorhombic and rutile phases of HfO_2–TiO_2 alloys are obtained by the first-principles generalized gradient approximation(GGA) +U approach, and the effects of Ti content and crystal structure on the electronic structures and optical properties of HfO_2–TiO_2 alloys are investigated. By introducing the Coulomb interactions of 5 d orbitals on Hf atom(U_1~d), those of 3 d orbitals on Ti atom(U_2~d), and those of 2 p orbitals on O atom(Up) simultaneously, we can improve the calculation values of the band gaps, where U_1~d, U_2~d, and Up values are 8.0 eV, 7.0 eV, and 6.0 eV for both the monoclinic phase and orthorhombic phase, and 8.0 eV, 7.0 eV, and 3.5 eV for the rutile phase. The electronic structures and optical properties of the HfO_2–TiO_2 alloys calculated by GGA +U_1~d(U_1~d= 8.0 eV) +U_2~d(U_2~d= 7.0 eV) +U^p(U^p= 6.0 eV or 3.5 eV) are compared with available experimental results.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant Nos.BUPT2009RC0412 and 10979065the National High Technology Research and Development Program of China under Grant No.2009AA03Z405the National Natural Science Foundation of China under Grant Nos.60644004 and 10979065
文摘The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional theory. The band gaps narrowing of AI1-x Cox N are found with the increase of Co concentrations. The analyses of the band structures and density of states show that AI1-xCoxN alloys exhibit a halfometallie character. Moreover, we have succeeded in demonstrating that Co doped AIN system in x = 0.125 is always antiferromagnetie, which is in good agreement with the experimental results. Besides, it is shown that the insertion of Co atom leads to redshift of the optical absorption edge. Finally, the optical constants of pure A1N and AI1-xCoxN alloy, such as loss function, refractive index and reflectivity, are discussed.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos. 60908028 and 60971068
文摘A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.
基金Project supported by the National Natural Science Foundation of China(Grant No.61171042)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FL018)the Doctoral Foundation of Binzhou University,China(Grant No.2012Y01)
文摘The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that the optimal form of p-type GaN is obtained with an appropriate AI:Mg co-doping ratio rather than with only Mg doping. A1 doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of A1-Mg co-doped GaN photoelectric materials.
基金Project(50474051) supported by the National Natural Science Foundation of China
文摘The electronic structure and optical properties of the tetragonal phase quaternary arsenide oxides YZnAsO and LaZnAsO were studied using density-functional theory(DFT) within generalized gradient approximation(GGA).The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS) were presented.The calculated energy band structures show that both YZnAsO and LaZnAsO are indirect gap semiconductors with band gap of 1.173 1 eV and 1.166 5 eV,respectively.The DOS and PDOS show the hybridization of Y-O/La-O atom orbits and Zn-As atom orbits.The dielectric function,reflectivity,absorption coefficient,refractive index,electron energy-loss function and optical conductivity were presented in an energy range from 0 to 25 eV for discussing the optical properties of YZnAsO and LaZnAsO.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province,China (Grant No. 2009ZRB01702)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No. J10LA08)
文摘The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.
基金Project(50474051) supported by the National Natural Science Foundation of China
文摘The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.
基金Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104) and the Foundation for University Young Core Instructors of Henan Province, China (Grant No. 2010GGJS-066).
文摘The electronic and optical properties of the defect chalcopyrite CdGa2Te4 compound are studied based on the first- principles calculations. The band structure and density of states are calculated to discuss the electronic properties and orbital hybridized properties of the compound. The optical properties, including complex dielectric function, absorption coefficient, refractive index, reflectivity, and loss function, and the origin of spectral peaks are analysed based on the electronic structures. The presented results exhibit isotropic behaviours in a low and a high energy range and an anisotropic behaviour in an intermediate energy range.
基金Project supported by the National Science Foundation of China (Grant No 2006CB921605) and the National Natural Science Foundation of China (Grant Nos 10174024 and 10474025).
文摘With the help of ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculating the electronic structure and linear optical properties is carried out for XCd2(SO4)3 (X =Tl, Rb). The results show that Tl2Cd2(SO4)3 (TlCdS) has a larger band gap than Rb2Cd2(SO4)3 (RbCdS) and the energy bands for RbCdS are more dispersive than those of TlCdS. From their partial densities of states (PDOS), we have observed that the hybridization between S ionic 2p and O atomic 2p orbitals forms SO4 ionic groups. The remarkable difference between RbCdS and TlCdS is, however, the degree of hybridization between cation (Tl and Rb) and its surrounding oxygen atoms. In the view of quantum chemistry, the strong p-d hybridization indicates the existence of their cation ionic bonds (Cd-O, Rb-O, and Tl-O). The calculations of TlCdS and RbCdS show their optical properties to be less anisotropic. Their anisotropies in the optical properties mainly occur in a low photon energy region of 5-16 eV.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574053 and 10674053)the 2004 NCET and 2003 EYTP of MOE of China, the National Basic Research Program of China (Grant Nos 2005CB724400 and 2001CB711201)the Cultivation Fund of the Key Scientific and Technical Innovation Project, China (Grant No 2004-295)
文摘The equilibrium lattice constant, the cohesive energy and the electronic properties of light metal hydrides LiXH3 and XLiH3 (X = Be, B or C) with perovskite lattice structures have been investigated by using the pseudopotential plane-wave method. Large energy gap of LiBeH3 indicates that it is insulating, but other investigated hydrides are metallic. The pressure-induced metallization of LiBeH3 is found at about 120 GPa, which is attributed to the increase of Be-p electrons with pressure. The electronegativity of the p electrons of X atom is responsible for the metallicity of the investigated LiXH3 hydrides, but the electronegativity of the s electrons of X atom plays an important role in the metallicity of the investigated XLiH3 hydrides. In order to deeply understand the investigated hydrides, their optical properties have also been investigated. The optical absorption of either LiBeH3 or BeLiH3 has a strong peak at about 5 eV, showing that their optical responses are qualitatively similar. It is also found that the optical responses of other investigated hydrides are stronger than those of LiBeH3 and BeLiH3 in lower energy ranges, especially in the case of CLiH3.
基金supported by the China Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant Nos. 10676025 and 10574096)the Science-Technology Foundation for Young Scientist of Sichuan Province,China (Grant No. 09ZQ026-049)
文摘The systematic trends of electrionic structure and optical properties of rutile (P42/mnm) RuO2 have been cal- culated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method within the generalised gradient approximation (GGA) for the exchange-correlation potential. The obtained equilibrium structure parameters are in excellent agreement with the experimental data. The calculated bulk modulus and elastic constants are also in good agreement with the experimental data and available theoretical calculations. Analysis based on elec- tronic structure and pseudogap reveals that the bonding nature in RuO2 is a combination of covalent, ionic and metallic bonds. Based on a Kramers Kronig analysis of the reflectivity, we have obtained the spectral dependence of the real and imaginary parts of the complex dielectric constant (~1 and z2, respectively) and the refractive index (n); and comparisons have shown that the theoretical results agree well with the experimental data as well. Meanwhile, we have also calculated the absorption coefficient, reflectivity index, electron energy loss function of RuO2 for radiation up to 30 eV. As a result, the predicted reflectivity index is in good agreement with the experimental data at low energies.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos.60908028 and 60971068
文摘Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.