期刊文献+
共找到2,144篇文章
< 1 2 108 >
每页显示 20 50 100
Antimicrobial resistance crisis:could artificial intelligence be the solution? 被引量:1
1
作者 Guang-Yu Liu Dan Yu +4 位作者 Mei-Mei Fan Xu Zhang Ze-Yu Jin Christoph Tang Xiao-Fen Liu 《Military Medical Research》 2025年第1期72-95,共24页
Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The ... Antimicrobial resistance is a global public health threat,and the World Health Organization(WHO)has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed.The discovery and introduction of novel antibiotics are time-consuming and expensive.According to WHO’s report of antibacterial agents in clinical development,only 18 novel antibiotics have been approved since 2014.Therefore,novel antibiotics are critically needed.Artificial intelligence(AI)has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics.Here,we first summarized recently marketed novel antibiotics,and antibiotic candidates in clinical development.In addition,we systematically reviewed the involvement of AI in antibacterial drug development and utilization,including small molecules,antimicrobial peptides,phage therapy,essential oils,as well as resistance mechanism prediction,and antibiotic stewardship. 展开更多
关键词 Antibiotic artificial intelligence(ai) Clinical development Machine learning(ML) Antimicrobial peptide Phage therapy Antibiotic stewardship
在线阅读 下载PDF
Artificial Intelligence Revolutionising the Automotive Sector:A Comprehensive Review of Current Insights, Challenges, and Future Scope
2
作者 Md Naeem Hossain MdAbdur Rahim +1 位作者 Md Mustafizur Rahman Devarajan Ramasamy 《Computers, Materials & Continua》 2025年第3期3643-3692,共50页
The automotive sector is crucial in modern society,facilitating essential transportation needs across personal,commercial,and logistical domains while significantly contributing to national economic development and em... The automotive sector is crucial in modern society,facilitating essential transportation needs across personal,commercial,and logistical domains while significantly contributing to national economic development and employment generation.The transformative impact of Artificial Intelligence(AI)has revolutionised multiple facets of the automotive industry,encompassing intelligent manufacturing processes,diagnostic systems,control mechanisms,supply chain operations,customer service platforms,and traffic management solutions.While extensive research exists on the above aspects of AI applications in automotive contexts,there is a compelling need to synthesise this knowledge comprehensively to guide and inspire future research.This review introduces a novel taxonomic framework that provides a holistic perspective on AI integration into the automotive sector,focusing on next-generation AI methods and their critical implementation aspects.Additionally,the proposed conceptual framework for real-time condition monitoring of electric vehicle subsystems delivers actionable maintenance recommendations to stakeholders,addressing a critical gap in the field.The review highlights that AI has significantly expedited the development of autonomous vehicles regarding navigation,decision-making,and safety features through the use of advanced algorithms and deep learning structures.Furthermore,it identifies advanced driver assistance systems,vehicle health monitoring,and predictive maintenance as the most impactful AI applications,transforming operational safety and maintenance efficiency in modern automotive technologies.The work is beneficial to understanding the various use cases of AI in the different automotive domains,where AI maintains a state-of-the-art for sector-specific applications,providing a strong foundation for meeting Industry 4.0 needs and encouraging AI use among more nascent industry segments.The current work is intended to consolidate previous works while shedding some light on future research directions in promoting further growth of AI-based innovations in the scope of automotive applications. 展开更多
关键词 artificial intelligence ai techniques automotive sector autonomous vehicle DECISION-MAKING VHMS
在线阅读 下载PDF
How Generative Artificial Intelligence Shapes the Future of Education
3
作者 Aiqing WANG 《Artificial Intelligence Education Studies》 2025年第1期31-40,共10页
Artificial intelligence(AI)has significantly transformed higher education by enabling personalized learning through adaptive platforms,intelligent tutoring systems,and real-time feedback mechanisms.This study ex-amine... Artificial intelligence(AI)has significantly transformed higher education by enabling personalized learning through adaptive platforms,intelligent tutoring systems,and real-time feedback mechanisms.This study ex-amines the benefits and challenges of AI-driven personalized learning,emphasizing its potential to improve student engagement,retention,and academic outcomes.However,ethical concerns—such as data privacy,al-gorithmic bias,and access disparities—pose challenges that must be addressed for sustainable AI integration.By analyzing case studies from multiple universities and synthesizing existing literature,this research proposes a framework for ethical AI implementation that balances innovation with accountability and inclusivity.The findings contribute to ongoing discussions on AI’s role in education,providing practical insights for educators,administrators,and policymakers. 展开更多
关键词 artificial intelligence Personalized Learning Higher Education Ethical ai Adaptive Learning
在线阅读 下载PDF
Cognitive Computing Models in Artificial Intelligence Education: From Theory to Practice
4
作者 Changkui LI 《Artificial Intelligence Education Studies》 2025年第1期1-14,共14页
Cognitive computing has emerged as a transformative force in artificial intelligence(AI)education,bridging theoretical advancements with practical applications.This article explores the role of cognitive models in en-... Cognitive computing has emerged as a transformative force in artificial intelligence(AI)education,bridging theoretical advancements with practical applications.This article explores the role of cognitive models in en-hancing learning systems,from intelligent tutoring and personalized recommendations to virtual laboratories and special education support.It examines key technologies—such as knowledge graphs,natural language processing,and multimodal data analysis—that enable adaptive,human-like responsiveness.The study also ad-dresses technical challenges like interpretability and data privacy,alongside ethical concerns including equity and bias.Looking forward,it discusses how cognitive computing could reshape future learning modalities and aligns with trends like artificial general intelligence and interdisciplinary learning science.By tracing the path from theory to practice,this work underscores the potential of cognitive computing to create an inclusive,dy-namic educational landscape,while highlighting the need for ethical and technical rigor to ensure its responsible evolution. 展开更多
关键词 Cognitive Computing artificial intelligence Education Adaptive Learning Ethical ai Future Learning
在线阅读 下载PDF
Exploration of the Application of Artificial Intelligence Technology in the Transformation of Old Objects
5
作者 Tonghuan Zhang Xinyu Yang +1 位作者 Ying Chen Qiufan Xie 《Journal of Electronic Research and Application》 2025年第2期51-57,共7页
With the rapid development of technology,artificial intelligence(AI)is increasingly being applied in various fields.In today’s context of resource scarcity,pursuit of sustainable development and resource reuse,the tr... With the rapid development of technology,artificial intelligence(AI)is increasingly being applied in various fields.In today’s context of resource scarcity,pursuit of sustainable development and resource reuse,the transformation of old objects is particularly important.This article analyzes the current status of old object transformation and the opportunities brought by the internet to old objects and delves into the application of artificial intelligence in old object transformation.The focus is on five aspects:intelligent identification and classification,intelligent evaluation and prediction,automation integration,intelligent design and optimization,and integration of 3D printing technology.Finally,the process of“redesigning an old furniture,such as a wooden desk,through AI technology”is described,including the recycling,identification,detection,design,transformation,and final user feedback of the old wooden desk.This illustrates the unlimited potential of the“AI+old object transformation”approach,advocates for people to strengthen green environmental protection,and drives sustainable development. 展开更多
关键词 artificial intelligence(ai) Old object transformation Environmental protection
在线阅读 下载PDF
Artificial intelligence in personalized cardiology treatment
6
作者 Abbas Mohammadi Sheida Shokohyar 《Digital Chinese Medicine》 2025年第1期28-35,共8页
Cardiovascular diseases are the leading cause of death,requiring innovative approaches for prevention,diagnosis,and treatment.Personalized medicine customizes interventions according to individual characteristics,with... Cardiovascular diseases are the leading cause of death,requiring innovative approaches for prevention,diagnosis,and treatment.Personalized medicine customizes interventions according to individual characteristics,with artificial intelligence(AI)playing a key role in analyzing complex data to improve diagnostic accuracy,predict outcomes,and optimize therapies.AI can identify patterns in imaging and biomarkers,facilitating the earlier detection of medical conditions.Wearable devices and health applications facilitate continuous monitoring and personalized care.Emerging fields such as digital Chinese medicine offer additional perspectives by integrating traditional diagnostic principles with modern digital tools,contributing to holistic and individualized cardiovascular care.This study examines the advancements and challenges in personalized cardiovascular medicine,highlighting the need to address issues such as data privacy,algorithmic bias,and accessibility to promote the equitable application of personalized medicine. 展开更多
关键词 artificial intelligence(ai) Machine learning Personalized medicine CARDIOLOGY Patient outcomes Risk stratification Digital Chinese medicine Ethical considerations
在线阅读 下载PDF
Innovation and Practice of Training Mode for Professional Postgraduates of Acupuncture and Tuina Based on Artificial Intelligence
7
作者 Mingjun LIU Xiaochao GANG +10 位作者 Zhengri CONG Junhao HU Jianfeng LIANG Chongwen ZHONG Xinyi YUAN Bing DAI Yuzhe ZHANG Lijie LI Tianyi MU Yiran HAN Chaochao HUA 《Asian Agricultural Research》 2024年第3期46-48,共3页
In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ... In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China. 展开更多
关键词 artificial intelligence (ai) ACUPUNCTURE and TUINA major PROFESSIONAL POSTGRADUATES Training mode
在线阅读 下载PDF
人工智能生成内容(AIGC)信息回避影响机制研究——AI身份威胁的调节作用
8
作者 张玥 姜冠岐 李璐含 《现代情报》 北大核心 2025年第4期60-73,共14页
[目的/意义]本文研究了用户对人工智能生成内容(AIGC)信息回避的成因与作用机制,为用户信息行为引导、AIGC技术优化和AIGC产品迭代提供理论参考。[方法/过程]基于认知—情感—意愿(Cognition-Affect-Conation,C-A-C)框架,构建信息可控... [目的/意义]本文研究了用户对人工智能生成内容(AIGC)信息回避的成因与作用机制,为用户信息行为引导、AIGC技术优化和AIGC产品迭代提供理论参考。[方法/过程]基于认知—情感—意愿(Cognition-Affect-Conation,C-A-C)框架,构建信息可控度、信息透明度和AI焦虑影响信息回避的理论模型,通过虚拟实验方式获取样本数据,并利用偏最小二乘法结构方程模型(PLS-SEM)对数据及模型进行分析与验证。[结果/结论]结果表明,用户对人工智能生成内容(AIGC)的信息回避行为在不同AIGC信息透明度与可控度之间存在显著差异,AI焦虑与信息回避行为有正向关系。研究发现,AI身份威胁对AIGC信息不确定性与AI焦虑之间的关系有正向调节作用。 展开更多
关键词 人工智能(ai) 人工智能生成内容(aiGC) 信息回避 ai身份威胁 ai焦虑
在线阅读 下载PDF
现实主义新论与AI艺术的现实生成
9
作者 李磊 《艺术百家》 北大核心 2025年第1期90-98,158,共10页
现实主义的定义与论争总是伴随着媒介环境更迭被不断重视与提及。人工智能时代也不例外,并存着两种现实主义:一种是经典现实主义,指向作品反映的现实生活;另一种是网络现实主义或媒介现实主义,形塑着一种全新的认知方式。相对应的是,现... 现实主义的定义与论争总是伴随着媒介环境更迭被不断重视与提及。人工智能时代也不例外,并存着两种现实主义:一种是经典现实主义,指向作品反映的现实生活;另一种是网络现实主义或媒介现实主义,形塑着一种全新的认知方式。相对应的是,现阶段的AI艺术基本上是以网络艺术的形式呈现的,既有经典艺术形态的一面,也有新艺术形态的一面。于是,网络现实主义关联虚拟层现实,经典现实主义关联经验层现实。一方面,创作过程和结果自动生成的特点增加了现实世界的更多未知与可能,对应的是混合的、无限的、游戏的虚拟现实,适用智能化的网络现实主义。另一方面,AI艺术用一种间接反映现实的方式重建了经典现实主义的认知规律,从而完成三种结合:人机交互的选代升级与媒介的科幻性结合;艺术想象的指令化与题材的现实性结合;创作素材的数字化与转码的准确性结合,并最终深度探索国产大模型的现实主义之路。 展开更多
关键词 现实主义 人工智能 ai艺术 现实生成
在线阅读 下载PDF
IFLA关于规范化应用AI技术的探索与启示
10
作者 吕游 《图书馆工作与研究》 北大核心 2025年第2期81-88,共8页
文章梳理IFLA关于规范化应用AI技术探索经历的起步、探索、发展3个阶段,指出其系列成果彰显了图书馆界维护知识自由的价值追求,展现了图书馆界加强技术规范化应用的不懈努力,并呈现出图书馆界规范化应用技术的逻辑体系,进而提出对我国... 文章梳理IFLA关于规范化应用AI技术探索经历的起步、探索、发展3个阶段,指出其系列成果彰显了图书馆界维护知识自由的价值追求,展现了图书馆界加强技术规范化应用的不懈努力,并呈现出图书馆界规范化应用技术的逻辑体系,进而提出对我国图书馆建设的启示,即构建规范化应用AI技术的分层框架,提升馆员规范化应用AI技术的能力,丰富面向用户的AI技术素养教育内容,加强规范化应用AI技术的交流协同。 展开更多
关键词 智慧图书馆 人工智能 ai技术 ai素养 知识自由 应用规范 IFLA
在线阅读 下载PDF
AI时代版权新问题及图书馆应对策略
11
作者 蒋金艳 《图书馆工作与研究》 北大核心 2025年第2期29-36,共8页
文章指出AI应用为版权领域带来AI生成内容作品属性认定和AI大模型训练过程中数据的合理使用两类问题,分析AI时代版权新问题对图书馆事业发展的影响,介绍行业协会和图书馆应对版权新问题的实践探索,并提出图书馆面向AI时代版权新问题的... 文章指出AI应用为版权领域带来AI生成内容作品属性认定和AI大模型训练过程中数据的合理使用两类问题,分析AI时代版权新问题对图书馆事业发展的影响,介绍行业协会和图书馆应对版权新问题的实践探索,并提出图书馆面向AI时代版权新问题的应对策略,即积极参与AI时代的版权治理工作,持续推进AI时代的版权多方协同,助力构建AI时代的版权服务体系,拓展优化AI时代的版权素养教育,全面提升AI时代的馆员版权服务能力。 展开更多
关键词 图书馆 人工智能 ai 版权素养 版权平衡 著作权 知识产权
在线阅读 下载PDF
对话式AI机器人在医学信息检索中的现状、挑战与启示
12
作者 崔丽媛 邱宇红 《江苏科技信息》 2025年第7期50-54,共5页
文章探讨了医学检索中对话式AI机器人的设计原则,基于Scopus与Web of Science平台的多源案例,分析其层次架构,探索模型中的深度学习与自然语言处理、上下文语境及个性化推荐等特征,解析对话式AI机器人在医学检索中的机遇与挑战以及对我... 文章探讨了医学检索中对话式AI机器人的设计原则,基于Scopus与Web of Science平台的多源案例,分析其层次架构,探索模型中的深度学习与自然语言处理、上下文语境及个性化推荐等特征,解析对话式AI机器人在医学检索中的机遇与挑战以及对我国的启示,为我国“新医科”建设提供借鉴与参考。 展开更多
关键词 对话式ai机器人 医学信息检索 生成式人工智能 人机交互
在线阅读 下载PDF
AI智能教育协同药学导论课程思政路径探索
13
作者 陶丽 李梢 《药学教育》 2025年第1期68-72,共5页
以GPT-4o为代表的新一代聊天机器人及其教育模型ChatGPT-Edu的迅猛发展,为AI与高等教育深度融合,以及深入推进课程思政的数字化转型带来新的契机。药学导论是药学专业教育中育德于课的重要高地,是药学专业大一新生在药学领域扬帆起航的... 以GPT-4o为代表的新一代聊天机器人及其教育模型ChatGPT-Edu的迅猛发展,为AI与高等教育深度融合,以及深入推进课程思政的数字化转型带来新的契机。药学导论是药学专业教育中育德于课的重要高地,是药学专业大一新生在药学领域扬帆起航的引领课程。以药学导论为试点,本文深入探讨AI智能教育协同课程思政的建设思路,以及AI智能教育如何重构课程思政教育的底层逻辑,为AI赋能高等教育课程思政的应用场景提供一条切实可行的实践路径。 展开更多
关键词 ai智能教育 药学导论 ai智能体 课程思政 立德树人 高等教育
在线阅读 下载PDF
生成式AI大模型的风险问题与规制进路:以GPT-4为例
14
作者 王晓丽 严驰 《北京航空航天大学学报(社会科学版)》 2025年第2期17-27,共11页
生成式人工智能的发展为人类社会带来了深层次和颠覆性的挑战。GPT-4在技术更新的同时也引发了底层算法、训练数据、知识产权方面的风险。在底层算法上,尽管GPT-4中潜藏着算法歧视的风险,但算法公开殊无必要,应借鉴类脑研究思路,推动GP... 生成式人工智能的发展为人类社会带来了深层次和颠覆性的挑战。GPT-4在技术更新的同时也引发了底层算法、训练数据、知识产权方面的风险。在底层算法上,尽管GPT-4中潜藏着算法歧视的风险,但算法公开殊无必要,应借鉴类脑研究思路,推动GPT-4走向通用人工智能;在训练数据上,GPT-4背后的海量数据存在较大的合规风险,应设立数据销毁制度,维护意识形态安全,探索中国特色发展方案;在知识产权上,GPT-4带来了一系列侵权风险,引发了生成物的作品属性认定争议,但尚无法构成对人类的作者主体资格的挑战。为更好地应对生成式人工智能大模型技术发展风险,应及时制定合适的规制方案,在元规制理论下,借鉴欧盟《数字服务法》中的制度设计,结合已有算法治理实践,寻求数字时代的自主创新,助力人工智能产业安全发展。 展开更多
关键词 人工智能 GPT-4 大模型 算法歧视 数据安全 知识产权
在线阅读 下载PDF
面向AIGC应用的高校图书馆批判性信息素养教育研究
15
作者 罗国锋 易童 闫舟舟 《农业图书情报学报》 2025年第1期47-58,共12页
[目的/意义]随着AIGC技术的快速发展和社会影响加深,培养和提升学生应用AIGC的批判性信息素养是当下高校图书馆的重要职责和历史使命。研究旨在探索面向AIGC应用的高校图书馆批判性信息素养教育内容和教育策略,推动人工智能时代大学生... [目的/意义]随着AIGC技术的快速发展和社会影响加深,培养和提升学生应用AIGC的批判性信息素养是当下高校图书馆的重要职责和历史使命。研究旨在探索面向AIGC应用的高校图书馆批判性信息素养教育内容和教育策略,推动人工智能时代大学生批判性认知和应用AIGC的能力,也为高校图书馆批判性信息素养教育发展提供参考。[方法/过程]通过梳理国内外相关文献,文章综述了面向AIGC应用的批判性信息素养教育研究现状,并基于《高等教育信息素养框架》对批判性思维能力的培养要求、高校图书馆批判性信息素养教育现状,国内外相关人工智能素养教育发展政策、指导意见,从AIGC应用知识、AIGC应用技能、AIGC应用伦理3个层面构建面向AIGC应用的高校图书馆批判性信息素养教育内容。同时,基于IFLA《图书馆应对人工智能的战略响应》要求、高校图书馆信息素养教育体系不足,建议从教育内容整合、教育团队建设、教育模式开发、教育体系优化等方面保障和实施AIGC应用视域下的高校图书馆批判性信息素养教育。[结果/结论]面向AIGC应用的批判性信息素养教育研究对培养和提升学生面向AIGC的批判性思维能力具有很好的推动作用。高校图书馆要觉醒责任担当,积极审视和应对面向AIGC应用的批判性信息素养教育的新要求,创新和拓展信息素养教育内容和形式,帮助学生习得应用AIGC所需的新信息素养能力。同时,高校图书馆也要保持AIGC应用视域下批判性信息素养教育内容持续更新,并勇于探索新的教育方法和策略,以更好培养和提升学生应用AIGC的信息素养,助力学生科学、正确、规范地使用AIGC,实现终生学习。 展开更多
关键词 生成式人工智能 aiGC 高校图书馆 批判性信息素养教育 人工智能伦理 数字素养
在线阅读 下载PDF
认知与实践:AI技术在高校图书馆应用现状调研分析 被引量:1
16
作者 赵兴胜 李小洁 +3 位作者 程川生 程蓓 梁健 马晓旭 《信息与管理研究》 2025年第1期6-19,共14页
准确把握AI技术在当下高校图书馆应用现状,对于推动高校图书馆服务创新、提升智能化服务水平具有重要的参考价值。本文运用文献调研、网络调研、问卷调查相结合的方法,在全国范围内面向高校图书馆及技术厂商调研AI技术在高校图书馆的应... 准确把握AI技术在当下高校图书馆应用现状,对于推动高校图书馆服务创新、提升智能化服务水平具有重要的参考价值。本文运用文献调研、网络调研、问卷调查相结合的方法,在全国范围内面向高校图书馆及技术厂商调研AI技术在高校图书馆的应用现状,对调查结果进行成果分析和问题分析,厘清了AI技术在高校图书馆的发展前景、实践现状、落地阻力等方面的现实情况,从校内外合作、图书馆领导者、图书馆员三方面提出促进AI技术在高校图书馆发展的实践建议。 展开更多
关键词 人工智能 问卷调查 高校图书馆 应用现状
在线阅读 下载PDF
面向AIoT的协同智能综述
17
作者 罗宇哲 李玲 +5 位作者 侯朋朋 于佳耕 程丽敏 张常有 武延军 赵琛 《计算机研究与发展》 北大核心 2025年第1期179-206,共28页
深度学习和物联网的融合发展有力地促进了AIoT生态的繁荣.一方面AIoT设备为深度学习提供了海量数据资源,另一方面深度学习使得AIoT设备更加智能化.为保护用户数据隐私和克服单个AIoT设备的资源瓶颈,联邦学习和协同推理成为了深度学习在A... 深度学习和物联网的融合发展有力地促进了AIoT生态的繁荣.一方面AIoT设备为深度学习提供了海量数据资源,另一方面深度学习使得AIoT设备更加智能化.为保护用户数据隐私和克服单个AIoT设备的资源瓶颈,联邦学习和协同推理成为了深度学习在AIoT应用场景中广泛应用的重要支撑.联邦学习能在保护隐私的前提下有效利用用户的数据资源来训练深度学习模型,协同推理能借助多个设备的计算资源来提升推理的性能.引入了面向AIoT的协同智能的基本概念,围绕实现高效、安全的知识传递与算力供给,总结了近十年来联邦学习和协同推理算法以及架构和隐私安全3个方面的相关技术进展,介绍了联邦学习和协同推理在AIoT应用场景中的内在联系.从设备共用、模型共用、隐私安全机制协同和激励机制协同等方面展望了面向AIoT的协同智能的未来发展. 展开更多
关键词 协同智能 联邦学习 协同推理 智能物联网 智能计算系统
在线阅读 下载PDF
A Deep Learning-Based Computational Algorithm for Identifying Damage Load Condition: An Artificial Intelligence Inverse Problem Solution for Failure Analysis 被引量:6
18
作者 Shaofei Ren Guorong Chen +2 位作者 Tiange Li Qijun Chen Shaofan Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期287-307,共21页
In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plast... In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses. 展开更多
关键词 artificial intelligence(ai) deep learning forensic materials engineering PLASTIC DEFORMATION structural FaiLURE analysis.
在线阅读 下载PDF
Beyond p-y method:A review of artificial intelligence approaches for predicting lateral capacity of drilled shafts in clayey soils
19
作者 M.E.Al-Atroush A.E.Aboelela Ezz El-Din Hemdan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3812-3840,共29页
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s... In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field. 展开更多
关键词 Laterally loaded drilled shaft load transfer and failure mechanisms Physics-informed neural networks(PINNs) P-y curves artificial intelligence(ai) DATASET
在线阅读 下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部