期刊文献+
共找到1,394篇文章
< 1 2 70 >
每页显示 20 50 100
Satellite fault diagnosis method based on predictive filter and empirical mode decomposition 被引量:8
1
作者 Yi Shen Yingchun Zhang Zhenhua Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期83-87,共5页
A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by n... A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by noise.Then the EMD method is introduced to decompose the fault estimation into a finite number of intrinsic mode functions and extract the trend of faults for fault diagnosis.The proposed scheme has the ability of diagnosing both abrupt and incipient faults of the actuator in a satellite attitude control subsystem.A mathematical simulation is given to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 satellite fault diagnosis predictive filter empirical mode decompositionemd).
在线阅读 下载PDF
FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM 被引量:14
2
作者 YuDejie ChengJunsheng YangYu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期267-270,共4页
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller b... Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings. 展开更多
关键词 Roller bearing empirical mode decomposition(emd) Hilbert spectrum Local Hilbert marginal spectrum Wavelet bases Envelope analysis
在线阅读 下载PDF
HARMONIC COMPONENT EXTRACTION FROM A CHAOTIC SIGNAL BASED ON EMPIRICAL MODE DECOMPOSITION METHOD 被引量:1
3
作者 李鸿光 孟光 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期221-225,共5页
A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed... A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed of a series of the simple intrinsic modes, the harmonic components were extracted f^om the chaotic signals. Simulation results show the approach is satisfactory. 展开更多
关键词 chaotic signal signal processing empirical mode decompositionemd Duffing function
在线阅读 下载PDF
Determination of Instantaneous Frequencies of Low Plasma Waves in the Magnetosheath Using Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)
4
作者 Ekong Ufot Nathaniel Nyakno Jimmy George Sunday Edet Etuk 《Atmospheric and Climate Sciences》 2013年第4期576-580,共5页
The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Phys... The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Physics has given the understanding of the effect of many waves coming together to form a wave field or wave packet. The common aspect of such study shows that two or more waves can superimpose constructively or destructively. The sudden high magnetic field data in the magnetosheath displays such possibility of superposition of waves. In this paper, we use the empirical mode decomposition (EMD) and Hilbert transform (HT) techniques to determine the instantaneous frequencies of low frequency plasma waves in the magnetosheath. Our analysis has shown that the turbulent behavior of magnetic field in the magnetosheath within the selected period is due to superposition of waves. 展开更多
关键词 Plasma WAVES Instantaneous Frequency empirical mode decomposition (emd) HILBERT TRANSFORM (HT)
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
5
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
经EMD处理的DACNN-BiGRU-Attention模型滚动轴承剩余寿命预测
6
作者 宁少慧 戎有志 董振才 《轻工机械》 2025年第1期63-71,共9页
针对深度学习单一模型对滚动轴承剩余使用寿命(Remaining Useful Life,RUL)预测精确度不高、轴承退化数据复杂和数据维度低且计算量大的问题,课题组提出了一种基于DACNN-BiGRU-Attention模型的新方法,用于预测滚动轴承的剩余寿命。首先... 针对深度学习单一模型对滚动轴承剩余使用寿命(Remaining Useful Life,RUL)预测精确度不高、轴承退化数据复杂和数据维度低且计算量大的问题,课题组提出了一种基于DACNN-BiGRU-Attention模型的新方法,用于预测滚动轴承的剩余寿命。首先,采用经验模态分解(Empirical Mode Decomposition,EMD)技术提取轴承振动信号的特征分量,组成新的高维度数据作为动态激活卷积神经网络(Dynamically Activating Convolutional Neural Networks,DACNN)的输入;其次,在卷积神经网络(Convolutional Neural Networks,CNN)中使用了动态激活函数(Dynamic ReLU),实现了对不同通道的自适应激活,从而降低了计算量;最后,在模型中引入了多头注意力(Multi-Head Attention,MHA)机制,有效地提取了数据信息。使用经EMD处理的DACNN-BiGRU-Attention模型在PHM2012轴承数据集上进行的验证结果显示预测精度有所提升,与CNN-BiGRU-Attention模型、CNN-BiGRU模型和未经处理的DACNN-BiGRU-Attention模型3种模型对比分析表明该模型在预测方面表现出色,有较好的预测精度。 展开更多
关键词 轴承 剩余使用寿命预测 经验模态分解 动态激活卷积神经网络 多头注意力
在线阅读 下载PDF
Sensitivity of intrinsic mode functions of Lorenz system to initial values based on EMD method 被引量:4
7
作者 邹明玮 封国林 高新全 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1384-1390,共7页
Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales... Extreme sensitivity to initial values is an intrinsic character of chaotic systems. The evolution of a chaotic system has a spatiotemporal structure containing quasi-periodic changes of different spatiotemporal scales. This paper uses an empirical mode decomposition (EMD) method to decompose and compare the evolution of the time-dependent evolutions of the x-component of the Lorenz system. The results indicate that the sensitivity of intrinsic mode function (IMF) component is dependent on initial values, which provides some scientific evidence for the possibility of long-range climatic prediction. 展开更多
关键词 empirical mode decomposition emd sensitivity initial values hierarchical level
在线阅读 下载PDF
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
8
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition emd wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
9
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(emd) Ensemble emd(Eemd) Complete Eemd with adaptive noise(CEemdAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
10
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition emd) 数据差分处理(data differential processing) 长短期记忆(long short-term memory LSTM)
在线阅读 下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
11
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 empirical mode decomposition(emd) k-nearest neighbor(KNN) principal component analysis(PCA) time series
在线阅读 下载PDF
Signal prediction based on empirical mode decomposition and artificial neural networks 被引量:1
12
作者 Wang Yong Liu Yanping Yang Jing 《Geodesy and Geodynamics》 2012年第1期52-56,共5页
In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o... In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone. 展开更多
关键词 emd empirical mode decomposition ANN (Artificial Neural Networks) MRME (Most Relevant Matching Extension) IMF (Intrinsic mode Function) endpoint problem RBF (Radial Basis Function)
在线阅读 下载PDF
NON-DESTRUCTIVE PAVEMENT LAYER THICKNESS MEASUREMENT USING EMPIRICAL MODE DECOMPOSITION WITH GPR 被引量:1
13
作者 Li Qiang Chen Jie +1 位作者 Liu Xiaojun Fang Guangyou 《Journal of Electronics(China)》 2014年第6期619-627,共9页
Ground Penetrating Radar(GPR) is an effective Non-Destructive Testing(NDT) technique for highway pavement surveys, which is able to acquire continuous pavement data compared with traditional core drilling method. In t... Ground Penetrating Radar(GPR) is an effective Non-Destructive Testing(NDT) technique for highway pavement surveys, which is able to acquire continuous pavement data compared with traditional core drilling method. In this study, we proposed an accurate and efficient method to estimate the thickness of each pavement layer using an air-coupled GPR system. For this work, the main difficulties are estimating each pavement layer's time delay and dielectric constant. We first give the basic signal model for pavement evaluation, and then present an Intrinsic Mode Functions(IMFs) product detector to determine each pavement layer's time delay. This method is based on Empirical Mode Decomposition(EMD), which is an adaptive signal decomposition procedure and proved to be suitable for suppressing noises in GPR signal. The dielectric constant was determined by metal reflection measurement. The laboratory and highway experiments illustrate that the proposed thickness estimation method yields reasonable result, thus meets the requirements of practical highway pavement survey with massive GPR data. 展开更多
关键词 Ground Penetrating Radar(GPR) Pavement thickness Non-Destructive Testing(NDT) Dielectric constant empirical mode decomposition(emd)
在线阅读 下载PDF
Improvement of the prediction accuracy of polar motion using empirical mode decomposition 被引量:2
14
作者 Yu Lei Hongbing Cai Danning Zhao 《Geodesy and Geodynamics》 2017年第2期141-146,共6页
Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode d... Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode decomposition (EMD), which is increasingly popular and has advantages over classical wavelet decomposition, can be used to remove short period variations from observed time series of pole co- ordinates. A hybrid model combing EMD and extreme learning machine (ELM), where high frequency signals are removed and processed time series is then modeled and predicted, is summarized in this paper. The prediction performance of the hybrid model is compared with that of the ELM-only method created from original time series. The results show that the proposed hybrid model outperforms the pure ELM method for both short-term and long-term prediction of pole coordinates. The improvement of prediction accuracy up to 360 days in the future is found to be 24.91% and 26.79% on average in terms of mean absolute error (MAE) for the xp and yp components of pole coordinates, respectively. 展开更多
关键词 Polar motion Prediction model empirical mode decomposition emd)Neural networks (NN)Extreme learning machine (ELM)
在线阅读 下载PDF
Segmented second algorithm of empirical mode decomposition
15
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition emd algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
在线阅读 下载PDF
Weighing axle weight of moving vehicle based on empirical mode decomposition
16
作者 周志峰 蔡萍 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期76-79,共4页
Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight... Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively. 展开更多
关键词 WEIGH-IN-MOTION empirical mode decomposition emd pseudo intrinsic mode function (pseudo-IMF)
在线阅读 下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
17
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
在线阅读 下载PDF
基于改进EMD的爆破振动信号降噪方法研究
18
作者 闫鹏 张云鹏 +1 位作者 周倩倩 杨曦 《振动与冲击》 北大核心 2025年第1期212-220,共9页
针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类... 针对经验模态分解(EMD)算法存在端点效应和降噪效果不佳的问题,依据延拓—分解—聚类—降噪—重构思想,提出了改进EMD的爆破振动信号降噪方法。该方法联合了综合相似指数同时兼顾延拓信号的形状和幅值相似性的特点、K-means算法的聚类特性以及小波包的降噪优势,不仅可以有效抑制端点效应,也具有良好的降噪效果。研究结果表明:在仿真信号端点效应抑制试验中,与多项式拟合和边界局部特征延拓方法相比,改进EMD方法的能量误差和均方误差最小。在实测爆破振动信号降噪中,与EMD和变分模态分解(VMD)方法相比,改进EMD方法的信噪比(20.94 dB)最大,均方根误差(0.0031)最小。改进EMD方法不仅可以较好保存中低频(0~200 Hz)信号能量,对200 Hz以上高频噪声也具有良好滤除效果。 展开更多
关键词 经验模态分解(emd) 爆破振动信号 端点效应 K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于聚类集合的EMD-CNN-BiLSTM自注意力机制短期电力负荷预测
19
作者 陈仪 刘春元 《软件工程》 2025年第3期1-5,46,共6页
为了提高短期电力负荷预测的精度和运算效率,提出了一种基于聚类集合的经验模态分解法(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、自注意力机制(Self-Attention,SAM)及双向长短期记忆网络(... 为了提高短期电力负荷预测的精度和运算效率,提出了一种基于聚类集合的经验模态分解法(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、自注意力机制(Self-Attention,SAM)及双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的混合预测模型。该模型利用EMD算法和K均值聚类算法将电力负荷数据分解与分组,并选取最优聚类分组数。随后,将各组数据送入CNN-BiLSTM自注意力机制神经网络中进行预测并融合得到完整的负荷数据。实验结果显示,所提方法的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别仅为3.436、1.049%和4.606,相较于传统算法,该模型在预测精度和效率上均有显著提升。 展开更多
关键词 短期负荷预测 经验模态分解 CNN-BiLSTM 自注意力机制
在线阅读 下载PDF
基于CEEMD和统计参数的斜拉桥损伤识别方法研究
20
作者 刘杰 丁雪 +2 位作者 刘庆宽 王海龙 卜建清 《振动与冲击》 EI CSCD 北大核心 2024年第19期326-336,共11页
为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参... 为解决仅使用互补集成经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法的斜拉桥信号分解存在含噪固有模态函数(intrinsic mode function,IMF)分量且不能进行损伤定量的问题,提出了一种基于CEEMD与统计参数方法相结合的斜拉桥损伤识别方法。该方法基于CEEMD方法对斜拉桥动力响应信号进行自适应性分解,确定适用的白噪声幅值标准差并推导CEEMD方法的集成次数,得到各阶IMF分量;采用欧氏距离对分解的IMF分量进行谱系聚类分析以避免模态混叠现象;采用峰度统计参数的有效权重峰度指标方法滤除含噪IMF分量,提取有效IMF分量并重构为有效IMF分量和;利用变异系数统计参数、二阶中心差分法和泰勒展开式推导损伤定位指标,根据四阶统计矩峰度统计参数推导损伤定量指标。用所提方法对某斜拉桥进行损伤识别研究,结果表明:仿真分析的损伤定位识别精度为100%,损伤定量最大误差为1.80%;在高斯白噪声干扰下,损伤定位不受影响,损伤定量最大误差为1.88%;进行实桥的损伤识别,结果表明实桥主梁无损伤。 展开更多
关键词 斜拉桥 损伤识别方法 互补集成经验模态分解(CEemd) 统计参数 损伤定量 噪声干扰
在线阅读 下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部