作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重...作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.展开更多
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
针对DeepLabv3+在高分辨率遥感图像语义分割中存在的分割目标边界残缺和细节模糊问题,提出了一种图像边界修复语义分割方法。引入多深度卷积头转置注意力(multi-Dconv head transposed attention,MDTA)边界修复模块,将通道注意力机制应...针对DeepLabv3+在高分辨率遥感图像语义分割中存在的分割目标边界残缺和细节模糊问题,提出了一种图像边界修复语义分割方法。引入多深度卷积头转置注意力(multi-Dconv head transposed attention,MDTA)边界修复模块,将通道注意力机制应用于多级低阶特征,获取不同抽象层次的边缘纹理结构;将经过通道权值分配的密集采样空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)级联模块的输出作为编码器的输出,解码器融合了低阶特征与编码器输出的增强特征,提高了目标边界的清晰度;利用空间上下文信息挖掘模块——上下文转换器(contextual transformer,CoT),增强对图像不同区域之间依赖关系的感知能力。实验证明,该方法在多个公开数据集上的性能取得了显著提升,在VOC2012的验证集上平均交并比(mean intersection over union,mIoU)达到了90.42%。展开更多
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw...In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.展开更多
由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编...由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。展开更多
文摘作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
基金supported by National Natural Science Foundation of China(No.11802272)China Postdoctoral Science Foundation(No.2019M651085)。
文摘In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.
文摘由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。