期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using Ultrasonic Images 被引量:1
1
作者 Fupei Wu Xiaoyang Xie Weilin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期277-288,共12页
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat... Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method. 展开更多
关键词 Ultrasonic detection Rail defects detection Deep learning enhanced network structure Module design
在线阅读 下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
2
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram enhanced structural damage Liquid-filled tank Impact
在线阅读 下载PDF
Tailoring Cathode-Electrolyte Interface for High-Power and Stable Lithium-Sulfur Batteries
3
作者 Mengting Liu Ling-Jiao Hu +6 位作者 Zhao-Kun Guan Tian-Ling Chen Xin-Yu Zhang Shuai Sun Ruoli Shi Panpan Jing Peng-Fei Wang 《Nano-Micro Letters》 2025年第4期181-211,共31页
Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,an... Global interest in lithium-sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost,high gravimetric,volumetric energy densities,abundant resources,and environmental friendliness.However,their practical application is significantly impeded by several serious issues that arise at the cathode-electrolyte interface,such as interface structure degradation including the uneven deposition of Li_(2)S,unstable cathode-electrolyte interphase(CEI)layer and intermediate polysulfide shuttle effect.Thus,an optimized cathode-electrolyte interface along with optimized electrodes is required for overall improvement.Herein,we comprehensively outline the challenges and corresponding strategies,including electrolyte optimization to create a dense CEI layer,regulating the Li_(2)S deposition pattern,and inhibiting the shuttle effect with regard to the solid-liquid-solid pathway,the transformation from solid-liquid-solid to solid-solid pathway,and solid-solid pathway at the cathode-electrolyte interface.In order to spur more perceptive research and hasten the widespread use of lithium-sulfur batteries,viewpoints on designing a stable interface with a deep comprehension are also put forth. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect Cathode-electrolyte interface Structural enhancement Reaction pathway
在线阅读 下载PDF
Sound Absorption Enhancement by Thin Multi-Slit Hybrid Structures 被引量:3
4
作者 任树伟 孟晗 +1 位作者 辛锋先 卢天健 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期91-94,共4页
We report an extraordinary sound absorption enhancement in low and intermediate frequencies achieved by a thin multi-slit hybrid structure formed by incorporating micrometer scale micro-slits into a sub-millimeter sca... We report an extraordinary sound absorption enhancement in low and intermediate frequencies achieved by a thin multi-slit hybrid structure formed by incorporating micrometer scale micro-slits into a sub-millimeter scale meso-slit matrix. Theoretical and numerical results reveal that this exotic phenomenon is attributed to the noticeable velocity and temperature gradients induced at the junctures of the micro- and meso-slits, which cause significant loss of sound energy as a result of viscous and thermal effects. It is demonstrated that the proposed thin multi-slit hybrid structure with micro-scale configuration is capable of controling low frequency noise with large wavelength, which is attractive for applications where the size and weight of a sound absorber are restricted. 展开更多
关键词 Sound Absorption Enhancement by Thin Multi-Slit Hybrid structures
在线阅读 下载PDF
Methods for Enhancing Geological Structures inSpectral Spatial Difference—Based on Remote-Sensing Image
5
《Journal of Earth Science》 SCIE CAS CSCD 2000年第2期57-57,共1页
关键词 Based on Remote-Sensing Image Methods for Enhancing Geological structures inSpectral Spatial Difference
在线阅读 下载PDF
Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure,Laser Spectrum Bandwidth and Central Frequency
6
作者 程文静 梁果 +3 位作者 吴萍 贾天卿 孙真荣 张诗按 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期41-45,共5页
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control... The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications. 展开更多
关键词 TL Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level structure Laser Spectrum Bandwidth and Central Frequency
在线阅读 下载PDF
Fe doping 1T phase MoS_(2)with enhanced zinc-ion storage ability and durability for high-performance aqueous zinc-ion batteries
7
作者 Jing-Yi Liu Rong-Jie Zhe +5 位作者 Zhan-Hong Peng Yi-Hui Song Lin-Xuan Yang Chen Qing Jun-Ling Guo Jin-Ping Liu 《Rare Metals》 2025年第1期253-263,共11页
As a promising cathode material for aqueous zinc-ion batteries,1T-MoS_(2)has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity.However,the limi... As a promising cathode material for aqueous zinc-ion batteries,1T-MoS_(2)has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity.However,the limited number of available Zn storage sites,i.e.,limited capacity,hinders its application because the inserted Zn^(2+),which form strong electrostatic interactions with 1T-MoS_(2),preventing subsequent Zn^(2+)insertion.Currently,the approach of enlarging the interlayer distance to reduce electrostatic interactions has been commonly used to enhance the capacity and reduce Zn^(2+)migration barriers.However,an enlarged interlayer spacing can weaken the van der Waals force between 1T-MoS_(2)monolayers,easily disrupting the structural stability.Herein,to address this issue,an effective strategy based on Fe doping is proposed for 1T-MoS_(2)(Fe-1T-MoS_(2)).The theoretical calculations reveal that Fe doping can simultaneously moderate the rate of decrease in the adsorption energy after gradually increasing the number of stored atoms,and enhance the electron delocalization on metal-O bonds.Therefore,the experiment results show that Fe doping can simultaneously activate more Zn storage sites,thus enhancing the capacity,and stabilize the structural stability for improved cycling performance.Consequently,Fe-1T-MoS_(2)exhibits a larger capacity(189 mAh·g^(-1)at 0.1 A·g^(-1))and superior cycling stability(78%capacity retention after 400 cycles at 2 A·g^(-1))than pure 1T-MoS_(2).This work may open up a new avenue for constructing high-performance MoS_(2)-based cathodes. 展开更多
关键词 Aqueous zinc-ion battery 1T-MoS_(2) Fe doping More Zn storage sites enhanced structural stability
原文传递
Ketamine enhances structural plasticity in human dopaminergic neurons:possible relevance for treatment-resistant depression 被引量:3
8
作者 Ginetta Collo Emilio Merlo Pich 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期645-646,共2页
Depression refers to a series of mental health issues characterized by loss of interest and enjoyment in everyday life,low mood and selected emotional,cognitive,physical and behavioral symptoms.Depression is a common ... Depression refers to a series of mental health issues characterized by loss of interest and enjoyment in everyday life,low mood and selected emotional,cognitive,physical and behavioral symptoms.Depression is a common disorder,affecting 5–15%of the general population.When diagnosed as major depressive disorder(MDD),patients are currentlytreated with pharmacological agents such as serotonin or noradren- aline uptake inhibitors (SSRI or SNRI) or tricyclics. 展开更多
关键词 MEK ERK Ketamine enhances structural plasticity in human dopaminergic neurons:possible relevance for treatment-resistant depression TRD MDD
在线阅读 下载PDF
Effect of Pore Size on the Nucleate Pool Boiling of Structured Enhanced Tubes 被引量:1
9
作者 Nae-HyunKim Jong-WonKim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2000年第3期230-235,共6页
In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometly of the present tube is similar to that of Turbo-B. Three tubes with diffe... In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometly of the present tube is similar to that of Turbo-B. Three tubes with different pore size (0.20 mm, 0.23 mm and 0.27 mm) were manufactured and tested using R-11, R-123 and R-134a. The pore size which yields the maximum heat transfer coefficient varied depending on the refrigerant. For R-134a, the maximum heat transfer coefficient was obtained for the tube having 0.27 nun pore size. For R-11 and R- 123, the optimum pore size was 0.23 mm. One novel feature of the present tubes is that their boiling curves do not show a cross-over characteristic, which existing pored tubes do. The connecting gaps of the present tube are believed to serve an additional route for the liquid supply and delay the dry-out of the tunnel. The present tubes yield the heat transfer coefficients approximately equal to those of the existing pored enhanced tubes. At the heat flux 40 kW/m2 and saturation temperature 4.4° C, the heat transfer coefficients of the present tubes are 6.5 times larger for R-11, 6.0 times larger for R-123 and 5.0 times larger for R-134a than that of the smooth tube 展开更多
关键词 structured enhanced tube PORE GAP nucleate pool boiling R-11 R-123 R-134a.
原文传递
Multiple directional enhanced light source through a periodic metal grating structure
10
作者 余乐 熊霄 +6 位作者 刘頔 冯兰天 李明 汪林俊 郭国平 郭光灿 任希锋 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第8期100-103,共4页
In recent years, semiconductor quantum dots (QDs) have been widely used as photon sources in quantum optics due to their special properties, such as high quantum effi- ciency, narrow and tunable emission spectrum, e... In recent years, semiconductor quantum dots (QDs) have been widely used as photon sources in quantum optics due to their special properties, such as high quantum effi- ciency, narrow and tunable emission spectrum, easy manipulation, and so on. The spontaneous emission of QDs also depends on the surrounding environment. 展开更多
关键词 QDS ting SPCE Multiple directional enhanced light source through a periodic metal grating structure
原文传递
Hetero-metallic lithiophilic sites to assist sustained diffusion-deposition of Li^(+) toward stable lithium metal anodes
11
作者 HUANG Shao-zhen HE Pan +2 位作者 YU Hua-ming LI Hui-miao CHEN Li-bao 《Journal of Central South University》 2024年第12期4437-4448,共12页
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo... Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries. 展开更多
关键词 lithium metal anodes lithiophilic sites intermetallic phase enhanced structural stability fast ion diffusion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部