In precision machining of complex curved surface parts with high performance, geometry accuracy is not the only constraint, but the performance should also be met. Performance of this kind of parts is closely related ...In precision machining of complex curved surface parts with high performance, geometry accuracy is not the only constraint, but the performance should also be met. Performance of this kind of parts is closely related to the geometrical and physical parameters, so the final actual size and shape are affected by multiple source constraints, such as geometry, physics, and performance. These parts are rather difficult to be manufactured and new manufacturing method according to performance requirement is urgently needed. Based on performance and manufacturing requirements for complex curved surface parts, a new classification method is proposed, which divided the complex curved surface parts into two categories: surface re-design complex curved surface parts with multi-source constraints(PRCS) and surface unique complex curved surface parts with pure geometric constraints(PUCS). A correlation model is constructed between the performance and multi-source constraints for PRCS, which reveals the correlation between the performance and multi-source constraints. A re-design method is also developed. Through solving the correlation model of the typical paws performance-associated surface, the mapping relation between the performance-associated surface and the related removal amount is obtained. The explicit correlation model and the method for the corresponding related removal amount of the performance-associated surface are built based on the classification of surface re-design complex curved surface parts with multi-source constraints. Research results have been used in the actual processing of the typical parts such as radome, common bottom components, nozzle, et al., which shows improved efficiency and accuracy of the precision machining for the surface re-design parts with complex curved surface.展开更多
The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To dat...The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To date, most of the accurate explicit models have been those with three logarithmic functions, but they require more computational time than the Colebrook equation. In this study, a new explicit non-linear regression model which has only two logarithmic functions is developed. The new model, when compared with the existing extremely accurate models, gives rise to the least average and maximum relative errors of 0.0025% and 0.0664%, respectively. Moreover, it requires far less computational time than the Colebrook equation. It is therefore concluded that the new explicit model provides a good trade-off between accuracy and relative computational efficiency for pipe friction factor estimation in the fully developed turbulent flow regime.展开更多
This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the fi...This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.展开更多
An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant ...An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.展开更多
An economical explicit scheme of time integration is implemented in a regional model over Indian region to achieve computational economy. The model is also integrated by explicit Leap-Frog Scheme. The performance of e...An economical explicit scheme of time integration is implemented in a regional model over Indian region to achieve computational economy. The model is also integrated by explicit Leap-Frog Scheme. The performance of economical explicit scheme is evaluated by comparing the forecast results with those produced by leap-frog scheme. The results show that the economical explicit scheme produces more or less similar forecasts as compared to those produced with leap-frog scheme. However, application of the economical explicit scheme saves substantial amount of computer time. The scheme is found nearly four times economical as compared to explicit leap-frog scheme.展开更多
当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精...当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。展开更多
Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,...Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.展开更多
The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. Th...The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.展开更多
Potato virus Y(PVY)is a non-persistent virus that is transmitted by many aphid species and causes significant damage to potato production.We constructed a spatially-explicit model simulating PVY spread in a potato fie...Potato virus Y(PVY)is a non-persistent virus that is transmitted by many aphid species and causes significant damage to potato production.We constructed a spatially-explicit model simulating PVY spread in a potato field and used it to investigate possible effects of transmission efficiency,initial inoculum levels,vector behavior,vector abundance,and timing of peak vector activity on PVY incidence at the end of a simulated growing season.Lower PVY incidence in planted seed resulted in lower virus infection at the end of the season.However,when populations of efficient PVY vectors were high,significant PVY spread occurred even when initial virus inoculum was low.Non-colonizing aphids were more important for PVY spread compared to colonizing aphids,particularly at high densities.An early-season peak in the numbers of noncolonizing aphids resulted in the highest number of infected plants in the end of the season,while mid-and late-season peaks caused relatively little virus spread.Our results highlight the importance of integrating different techniques to prevent the number of PVY-infected plants from exceeding economically acceptable levels instead of trying to control aphids within potato fields.Such management plans should be implemented very early in a growing season.展开更多
Modeling two-dimensional overland flow across complex real-world topography is a challenging problem. Predicting the overland flow variables for various whatif rainfall scenarios can facilitate designing water infrast...Modeling two-dimensional overland flow across complex real-world topography is a challenging problem. Predicting the overland flow variables for various whatif rainfall scenarios can facilitate designing water infrastructure components aimed at preventing inundation and urban flooding. Numerical models that are being used range from those that solve the simplified St. Venant equations to CFD models that solve the complete three dimensional Navier-Stokes equations. In this work, the performance of the USGS Diffusion Hydrodynamic Model (DHM) for a series of overland flow test problems was tested by comparing numerical solutions obtained for an event-driven simulation across various sensitive parameter combinations. The reliability of the model and its ability to incorporate various topographical characteristics in the domain are illustrated.展开更多
Vegetation in hot and arid valleys is a crucial indicator of ecosystem health,but is vulnerable to human activities and environmental change.Using the Longkaikou Reservoir in the Jinsha River in southwestern China as ...Vegetation in hot and arid valleys is a crucial indicator of ecosystem health,but is vulnerable to human activities and environmental change.Using the Longkaikou Reservoir in the Jinsha River in southwestern China as a case study,we developed a spatially explicit model that combined the plant growth,fruiting,seed dispersal,and seed germination stages to reveal the potential impact of multiple human activities(reservoir construction,logging,grazing,and aerial seeding) on the vegetation dynamics of Dodonaea viscosa and Pinus yunnanensis.After reservoir construction,the grassland area of 68 km^(2) in 2003 decreased to 24 km^(2) in 2018,replaced by forest,shrubland,and bodies of water,and the precipitation increased during the dry season,which indicated the improvement of the local plant and soil environment.Our model predicted that when soil moisture decreased by more than 20% compared to current levels,the area of D.viscosa increased greatly at low elevations;however,when at higher soil moisture,P.yunnanensis would occupy more of the study area.Logging and grazing would slightly change the spatial pattern of vegetation and delay P.yunnanensis communities from achieving stability by directly reducing plant biomass.Countermeasures such as aerial seeding would increase the total area by 13.13 km^(2) and 8.09 km^(2) of two plants,respectively,and accelerate the stabilization of plant communities.The effects of multiple human activities on vegetation may counteract each other;for example,logging decreased the P.yunnanensis area whereas aerial seeding increased it,and plant biomass changed in response to this pressure.Given the complex relationships between vegetation and human impacts,our study provides a scientific basis for vegetation restoration and ecological security in this hot and arid valley.展开更多
The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a...The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.展开更多
Friction factor estimation is essential in fluid flow in pipes calculations. The Colebrook equation, which is a referential standard for its estimation, is implicit in friction factor, f. This implies that f can only ...Friction factor estimation is essential in fluid flow in pipes calculations. The Colebrook equation, which is a referential standard for its estimation, is implicit in friction factor, f. This implies that f can only be obtained via iterative solution. Sequel to this, explicit approximations of the Colebrook equation developed using analytical approaches have been proposed. A shift in paradigm is the application of artificial intelligence in the area of fluid flow. The use of artificial neural network, an artificial intelligence technique for prediction of friction factor was investigated in this study. The network having a 2-30-30-1 topology was trained using the Levenberg-Marquardt back propagation algorithm. The inputs to the network consisted of 60,000 dataset of Reynolds number and relative roughness which were transformed to logarithmic scales. The performance evaluation of the model gives rise to a mean square error value of 2.456 × 10<sup>–15</sup> and a relative error of not more than 0.004%. The error indices are less than those of previously developed neural network models and a vast majority of the non neural networks are based on explicit analytical approximations of the Colebrook equation.展开更多
The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state...The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.展开更多
基金supported by Key Program of National Natural Science Foundation of China(Grant No.50835001)Program for New Century Excellent Talents in University,China(Grant No.NCET-13-0081)
文摘In precision machining of complex curved surface parts with high performance, geometry accuracy is not the only constraint, but the performance should also be met. Performance of this kind of parts is closely related to the geometrical and physical parameters, so the final actual size and shape are affected by multiple source constraints, such as geometry, physics, and performance. These parts are rather difficult to be manufactured and new manufacturing method according to performance requirement is urgently needed. Based on performance and manufacturing requirements for complex curved surface parts, a new classification method is proposed, which divided the complex curved surface parts into two categories: surface re-design complex curved surface parts with multi-source constraints(PRCS) and surface unique complex curved surface parts with pure geometric constraints(PUCS). A correlation model is constructed between the performance and multi-source constraints for PRCS, which reveals the correlation between the performance and multi-source constraints. A re-design method is also developed. Through solving the correlation model of the typical paws performance-associated surface, the mapping relation between the performance-associated surface and the related removal amount is obtained. The explicit correlation model and the method for the corresponding related removal amount of the performance-associated surface are built based on the classification of surface re-design complex curved surface parts with multi-source constraints. Research results have been used in the actual processing of the typical parts such as radome, common bottom components, nozzle, et al., which shows improved efficiency and accuracy of the precision machining for the surface re-design parts with complex curved surface.
文摘The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To date, most of the accurate explicit models have been those with three logarithmic functions, but they require more computational time than the Colebrook equation. In this study, a new explicit non-linear regression model which has only two logarithmic functions is developed. The new model, when compared with the existing extremely accurate models, gives rise to the least average and maximum relative errors of 0.0025% and 0.0664%, respectively. Moreover, it requires far less computational time than the Colebrook equation. It is therefore concluded that the new explicit model provides a good trade-off between accuracy and relative computational efficiency for pipe friction factor estimation in the fully developed turbulent flow regime.
基金supported by the Mathematics and Physics Foundation of Beijing Polytechnic University and the National Natural Science Foundation of China (Grant No 40536029)
文摘Explicit solutions are derived for some nonlinear physical model equations by using a delicate way of two-step ansatz method.
文摘This paper briefly reviews the characteristics and major processes of the explicit finite element method in modeling the near-fault ground motion field. The emphasis is on the finite element-related problems in the finite fault source modeling. A modified kinematic source model is presented, in which vibration with some high frequency components is introduced into the traditional slip time function to ensure that the source and ground motion include sufficient high frequency components. The model presented is verified through a simple modeling example. It is shown that the predicted near-fault ground motion field exhibits similar characteristics to those observed in strong motion records, such as the hanging wall effect, vertical effect, fling step effect and velocity pulse effect, etc.
文摘An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.
文摘An economical explicit scheme of time integration is implemented in a regional model over Indian region to achieve computational economy. The model is also integrated by explicit Leap-Frog Scheme. The performance of economical explicit scheme is evaluated by comparing the forecast results with those produced by leap-frog scheme. The results show that the economical explicit scheme produces more or less similar forecasts as compared to those produced with leap-frog scheme. However, application of the economical explicit scheme saves substantial amount of computer time. The scheme is found nearly four times economical as compared to explicit leap-frog scheme.
文摘当参数失配时,永磁同步电机的显式模型预测(explicit model predictive,EMP)直接速度控制将出现明显的稳态静差。为此,现有方法通过配置扩张状态观测器(extended state observer,ESO)来实时观测和前馈补偿模型偏差,以实现无静差、高精度的转速跟随控制。但实验和理论分析表明,由于ESO的带宽有限,对于变化扰动的补偿能力较弱,参数失配时系统的动态性能恶化。为同时改善参数失配时系统的稳态控制精度和动态性能,并提高鲁棒性,该文将无模型控制与EMP控制进行融合,通过构造超局部预测模型和数据驱动观测器,提出新的EMP直接速度控制策略。实验结果表明:所提方法凭借数据驱动观测器的高观测带宽,可以同时在动态和稳态阶段实现参数失配的优良补偿,兼顾动态与稳态性能。
基金National Natural Science Foundation of China(U22B20149,22308376)Outstanding Young Scholars Foundation of China University of Petroleum(Beijing)(2462023BJRC015)Foundation of United Institute for Carbon Neutrality(CNIF20230209)。
文摘Dual atomic catalysts(DAC),particularly copper(Cu_(2))-based nitrogen(N)doped graphene,show great potential to effectively convert CO_(2)and nitrate(NO_(3)-)into important industrial chemicals such as ethylene,glycol,acetamide,and urea through an efficient catalytical process that involves C–C and C–N coupling.However,the origin of the coupling activity remained unclear,which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO_(2)reduction reaction(CO_(2)RR).To address this challenge,this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu_(2)-based N-doped carbon(Cu_(2)N_(6)C_(10))catalyst for CO_(2)RR.These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene,acetamide,and urea via coupling in the interfacial reaction micro-environment.Due to the sluggishness of CO_(2),the formation of a solvation electric layer by anions(F^(-),Cl^(-),Br^(-),and I^(-))and cations(Na+,Mg^(2+),K+,and Ca^(2+))leads to electron transfer towards the Cu surface.This process significantly accelerates the reduction of CO_(2).These results reveal that*CO intermediates play a pivotal role in N-integrated CO_(2)RR.Remarkably,the Cu_(2)-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date.Our findings reveal that through the process of a condensation reaction between*CO and NH_(2)OH for urea synthesis,*NO_(3)-is reduced to*NH_(3),and*CO_(2)to*CCO at dual Cu atom sites.This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH_(3)and the ketene intermediate.Furthermore,we found that the I-and Mg^(2+)ions,influenced by pH,were highly effective for acetamide and ammonia synthesis,except when F-and Ca^(2+)were present.Furthermore,the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations,and we found that adjusting the micro-environment can change the dominant side reaction,shifting from hydrogen production in acidic conditions to water reduction in alkaline ones.This study introduces a novel approach using ion-H_(2)O cages to significantly enhance the efficiency of C–N coupling reactions.
基金Funded by the National Natural Science Foundation of China(Nos.51278495,51174291)the Open Fund of Nation Engineering Laboratory for High Speed Railway Construction(No.HSR2013011)
文摘The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.
基金supported in part by the United States Department of Agriculture National institute of Food and Agriculture Special Crops Research initiative (Award # 2014-51181-22373)Funding for Hongchun Qu’s stay at the University of Maine was received from the National Natural Science Foundation of China (Award # 61871061)
文摘Potato virus Y(PVY)is a non-persistent virus that is transmitted by many aphid species and causes significant damage to potato production.We constructed a spatially-explicit model simulating PVY spread in a potato field and used it to investigate possible effects of transmission efficiency,initial inoculum levels,vector behavior,vector abundance,and timing of peak vector activity on PVY incidence at the end of a simulated growing season.Lower PVY incidence in planted seed resulted in lower virus infection at the end of the season.However,when populations of efficient PVY vectors were high,significant PVY spread occurred even when initial virus inoculum was low.Non-colonizing aphids were more important for PVY spread compared to colonizing aphids,particularly at high densities.An early-season peak in the numbers of noncolonizing aphids resulted in the highest number of infected plants in the end of the season,while mid-and late-season peaks caused relatively little virus spread.Our results highlight the importance of integrating different techniques to prevent the number of PVY-infected plants from exceeding economically acceptable levels instead of trying to control aphids within potato fields.Such management plans should be implemented very early in a growing season.
文摘Modeling two-dimensional overland flow across complex real-world topography is a challenging problem. Predicting the overland flow variables for various whatif rainfall scenarios can facilitate designing water infrastructure components aimed at preventing inundation and urban flooding. Numerical models that are being used range from those that solve the simplified St. Venant equations to CFD models that solve the complete three dimensional Navier-Stokes equations. In this work, the performance of the USGS Diffusion Hydrodynamic Model (DHM) for a series of overland flow test problems was tested by comparing numerical solutions obtained for an event-driven simulation across various sensitive parameter combinations. The reliability of the model and its ability to incorporate various topographical characteristics in the domain are illustrated.
基金financially supported by the National Key R&D Plan of China (No.2016YFC0502209)the NSFC-Shandong Joint Fund (No.U1806217)+1 种基金the National Natural Science Foundation of China (No.52009006)the Interdiscipline Research Funds of Beijing Normal University。
文摘Vegetation in hot and arid valleys is a crucial indicator of ecosystem health,but is vulnerable to human activities and environmental change.Using the Longkaikou Reservoir in the Jinsha River in southwestern China as a case study,we developed a spatially explicit model that combined the plant growth,fruiting,seed dispersal,and seed germination stages to reveal the potential impact of multiple human activities(reservoir construction,logging,grazing,and aerial seeding) on the vegetation dynamics of Dodonaea viscosa and Pinus yunnanensis.After reservoir construction,the grassland area of 68 km^(2) in 2003 decreased to 24 km^(2) in 2018,replaced by forest,shrubland,and bodies of water,and the precipitation increased during the dry season,which indicated the improvement of the local plant and soil environment.Our model predicted that when soil moisture decreased by more than 20% compared to current levels,the area of D.viscosa increased greatly at low elevations;however,when at higher soil moisture,P.yunnanensis would occupy more of the study area.Logging and grazing would slightly change the spatial pattern of vegetation and delay P.yunnanensis communities from achieving stability by directly reducing plant biomass.Countermeasures such as aerial seeding would increase the total area by 13.13 km^(2) and 8.09 km^(2) of two plants,respectively,and accelerate the stabilization of plant communities.The effects of multiple human activities on vegetation may counteract each other;for example,logging decreased the P.yunnanensis area whereas aerial seeding increased it,and plant biomass changed in response to this pressure.Given the complex relationships between vegetation and human impacts,our study provides a scientific basis for vegetation restoration and ecological security in this hot and arid valley.
基金Thailand Science ResearchInnovation Fund,and King Mongkut's University of Technology North Bangkok Contract No.KMUTNB-FF-65-45.
文摘The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.
文摘Friction factor estimation is essential in fluid flow in pipes calculations. The Colebrook equation, which is a referential standard for its estimation, is implicit in friction factor, f. This implies that f can only be obtained via iterative solution. Sequel to this, explicit approximations of the Colebrook equation developed using analytical approaches have been proposed. A shift in paradigm is the application of artificial intelligence in the area of fluid flow. The use of artificial neural network, an artificial intelligence technique for prediction of friction factor was investigated in this study. The network having a 2-30-30-1 topology was trained using the Levenberg-Marquardt back propagation algorithm. The inputs to the network consisted of 60,000 dataset of Reynolds number and relative roughness which were transformed to logarithmic scales. The performance evaluation of the model gives rise to a mean square error value of 2.456 × 10<sup>–15</sup> and a relative error of not more than 0.004%. The error indices are less than those of previously developed neural network models and a vast majority of the non neural networks are based on explicit analytical approximations of the Colebrook equation.
文摘The paper introduces effective and straightforward algorithms of both explicit and implicit model-following designs with state derivative measurement feedback in novel reciprocal state space form (RSS) to handle state derivative related performance output and state related performance output design cases. Applying proposed algorithms, no integrators are required. Consequently, implementation is simple and low-cost. Simulation has also been carried out to verify the proposed algorithms. Since acceleration can only be modeled as state derivative in state space form and micro-accelerometer which is the state derivative sensor is getting more and more attentions in many microelectromechanical and nanoelectromechanical systems (MEMS/NEMS) applications, the proposed algorithms are suitable for MEMS/NEMS systems installed with micro-accelerometers.