期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Exponential Convergence in Probability for Empirical Means of Lévy Processes
1
作者 Shu-lan Hu Nian Yao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第3期481-488,共8页
Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)d... Let (Xt)t≥0 be a Lévy process taking values in R^d with absolutely continuous marginal distributions. Given a real measurable function f on R^d in Kato's class, we show that the empirical mean 1/t ∫ f(Xs)ds converges to a constant z in probability with an exponential rate if and only if f has a uniform mean z. This result improves a classical result of Kahane et al. and generalizes a similar result of L. Wu from the Brownian Motion to general Lévy processes. 展开更多
关键词 L6vy processes exponential convergence in probability large deviations functions with uniform mean
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部